1 Separation of Variables

ay

¥ =331 +y) > — =32(1+y)

T+y T+y

M4yl =54 14y =ee’

y=ce' 1L k#0

2 Approximation Methods

2.1 Euler’s Method (Tangent Line Method) - 1768

With a given function 4/ = f(£,y) an
the line point by point.

a given set point po we can approximate

For the in

il value problem o/ = f(t.y), y(to) = 1o

Use the formulas {7+ = 0 ®
Ynir = b+ B (b )

nt1
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Obtain Euler approximation on [0, 0.4] with step size 0.1 of
—2ty +t and y(0)

h=toth=
o
U1 =0+ kit o) = —1
f=h+h=02
v2 = g1+ hf(tn) = —097
o
U =t + hf(t2,32) = —0.9112

= —0.826528

2.2 Runge-Kutta Method of Approximation

1f we have an IVP, we can caleulate the next values with a process similar

to (1)
iy =tath
ot = U+ b
Where
K = f(tasya)

h h
s B B

For more precision, use the fourth order Runge-Kutta method. Tt is the
most commonly used method hoth because of its speed as well as its relative
precision

tur =ta+h

{I/nu = o+ B (ks 2z 2 + k)
Where

-.u = f(taun)

k= r(r,‘ 3ot 4»,‘.) ©

h h
ks = (r“ bt E"‘l)

Fina = f (b + by yn + hkg)

3 Picard’s Theorem

Theorem 1 (Picards). Suppose the function f(t.y) is continuous on the
region R = {(L,y)|a <1 <b,c <y <d} and (tg.y) € R. Then there evists
a positive number h such that the IVP has a solution for t in the interval
(to = hoto + ). Furthermore, it f,(t,) is also continuous on R, then that
solution is unique.

4 Linearity and Nonlinearity
An equation F(z, 3, 7s, .., %) = ¢ linear if it is in the form ayz1+asr; +

+ y, = ¢ where a, are constants.
Furthermore, if ¢ = 0, the equation is said to be homogeneous.

We can g«mmlm the concept of a linear equation to a lincar differenial
cquation. A diferential equation Fly,y',y".-..y") = (0) s it is
in Ahv form: a, (1) o ()52 + ao(t)BE = £(t) where
all 1 of  are assumed to be defined over some commion interval I
i f(t) = 0 over the interval I, the differential equation is said to be
homogencous,
We wm also introduce some casier notation for lincar algebraic equa-

tions: X = [11,25,...,7,] and for lincar differential cquations: ¥
" y”,, Jol
We vl oo imoduce  the licar operator  L:
L(R) = aizy + agy + -+ + 0y
-y dy &y
(y)a:,‘u)W Faua () gy 4ol )W +aolt) 75

4.1 Properties
A solution of the algebraic is any X that satisfies the definition of linear
algebraic equations, while a solution of the differcntial is for any § that
satisfies the definition of linear differential equations.

For homogeneons lincar equations:

o A constant multiple of a solution is also a solution.

o The sum of two solutions s also  solution.

Linear Operator Properties:

o Liki) = k

o LG+ W) =

4.1.1 Superposition Principle

Let iy and i be any solutions of the homogeneous linear equation L(i) =
Their sum is also a solution. A constant multiple is a solution for any
constant k

4.1.2 Nonhomogeneous Principle

Let ) be any solution to a linear nonhomogeneous cquation L(f) = ¢
(algebraic) or L(ii) = f(¢) (differential), then 1 = ii, + i is also a solution,
where i is a solution to the associated homogeneous equation L(i) =

4.2 Steps for Solving Nonhomogeneous Linear Equa-
tions

1. Find all G, of (i) =0
2. Fina any G0/ L(d) =

3. Add them, i

i, + 1, to get all solutions of L(d) = f.

5 Solving 1"’ Order Linear Differential Equa-
tions

5.1 Euler-Lagrange 2-Stage Method

To solve a linear differential equation in the form y' + p(t)y = f(t) using this
method

1. Solve y + p(t)y = 0 by separation of variables to get y, = ce~ [P0

2. Solve v/(t)e=Tr0
o(t)e- Iro

= f(t) for v(t) to get the particular solution y, =

3. Combine to get

ult)

syl 1208 [ b

5.2 Integrating Factor Method
1. Find the integrating factor ju(t) = e/ 7% (Note, [ p(t) dt can be any
antiderivative. In other words, don’t bother with the addition of a
constant.)

2. Multiply each side by the integrating factor to get u(1)(y' + p(t)y) =

F(#)p(t) Which will always reduce to 4 (el P0dty(t)) = f(t)el PO

3. Take the antiderivative of both sides e/ 70 dty

— [ Fel POy

4. Solve for g

Py pre -
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dy
Yoy
a Y

() = el 1 et

.*'y,/:r'ma."(f -1+

y(t)=ce' —t—1

6 Applications of 1* Order Linear Differen-
tial Equations

6.1 Growth and Decay
The function

&

can be called the growth or decay equation depending on the sign of &
We can explicitly find the solution to these equations:

For each k, the solution of the IVP
dy ,
— = ky, y(0) = yo.
v.(0) = u ®
Ts given by
o(t) = ot
‘We can use these equations for a wide variety of different equations such
as continuously compounding interest

LA@0) = Ay
Aft) = e

6.2 Mixing and Cooling

We can also use these models for mixing and cooling problems. A mixing
problem consists of some amount of substance goes into a receptacle at a
certain rate, and some amount of mixed substance comes out. We can modcl
is s such.

If 2(t) is the amount of dissolved substance, then

L Rate I — Rate Out

df
Where | Rate In = Concentration in - Flow Rate In
Rate Out = Concentration in - Flow Rate Out

We can also use these for cooling problems. Newton'’s law of cooling is as
follows.

[T = Temperature of the Object
Where
Temperature of the Surroundings

7 Systems of Differential Equations

1f one or more functions are dependent on other functions, then we call them

Coupled ‘/,: w
¥ =y
coupled. Otherwise we call them decoupled.
Decoupled {”

7.1 Autonomous First Order System

Autonomons systems are not dependent on t, so we can treat them a lttle
differently. For these equations we can use a phase plane, vector field, and
the trajectory of the solution.

(£) can give us a parametric curve. This me:

Every solution of a system we call a state of the system, and the collection
of all the trajectories and states is called a phase portraif

Au equilibritum poiat for this two dimensional system is s (z,y) point
where % = 0 = 4

@

7.2 Graphical Methods for Solving

Sketching is a pain in the ass.
can use to make our lives easier

Therefore there are a conple tricks that we

We can use nullelines to more easily draw the solutions. Nullclines are
an adaptation of previously mentioned isoclines (27). A V nullcline is an
isocline of vertical slopes where &’ = 0. An H mullcline is an isocline of
horizontal slopes where i = 0. Equilibria occurs at the point wl
two nullelines intersect.

Note, when existence and uniqueness hold for an autonomous system,
phase plane trajectories never cross.

these

7.3 Quick Sketching Outline for Phase Portraits
1. Nullelines and Equilibria
 Where o = 0, slopes are vertical

o Where yf =0, slopes are horizontal

o Where 2/ = y/ = 0, we have equilibria.

2. Left-Right Directions

o Where 2 is positive, arrows point right

o Where 2 is negative, arrows point left
3. Up-Down Directions

« Where y/ s positive, arrows point up.

© Where y/ is negative, arrows point down.

4. Check Uniqueness
Where phase plane trajectories do not cross, we have uniqueness
7.4 Applications of Systems of Differential Equations
7.4.1 Predator-Prey Assumptions

In the absence of foxes, the rabbit population will grow with the Malthusian
Growth Law: 4 ar >0 In the absence of rabbits, the fox population
will die off according to the law: 4 = —a;F, ap >0 When both foxes and
rabbits are present, the number of actions is o the product of the
population sizes, with inverse bebavior. Thus we can get the Lotka-Volterra

s
8 Matrices

8.1 Definitions

bbb by
a @ o e (1)
my my mg e m,

We can also describe these matrices by saying it has order m x n where
m and n are the row and column sizes respectively. Two matrices are equal
if they have the same m and n and the values contained are cqual. We can
also have matrices with orders m x 1 or n x 1 which are called column and
row veetors.

Tf all entries are 0, we call it a zero matrix; however if all entries but the
diagonal are zero, this is called an diagonal matrix. These diagonal mumber
are called diagonal elements. A special diagonal matrix is the identity matrix,
which is formed when the diagonal clements are ones,

1o 0
01 0 .

. (12)
00 1

An Ap A
AL A A A
Au Az Aum
By Bu By,
B Bn Bn - By 13)
B B Bu,
AB Ay B Ay By
AB— Ay By Ay By Ay By
A By An-By Ay B,

8.3 Matrix Transposition

We can flip a matrix diagonally so that its columns become rows and its
rows become cohumns. We call this the transpose of the matrix, written A”.

8.3.1 Properties
o (AT = A
© (A+B) = AT+ B’
o (kA)" = KA for any scalar k.

o (AB)" = ATBT

9 Matrices and Systems of Linear Equations

9.1 Augmented Matrix

An augmented matrix is where two different matrices are combined to form
a new matrix.

9.2 Elementary Row Operations

o Interchange row i and i B = R,. R} = R,

o Multiply row i by a constant. R = cft;

o Leaving j untouched, add to i a constant times j. R = R, + cR;

These are handy when dealing with matrices and trying to obtain Reduced
Row Echelon Form (9.3)

9.3 Reduced Row Echelon Form
10 0fh

Afbl=| 0 1 0|6 (15)
00 1]b

@ () rows are at the bottom.
o Leftmost non-zero entry is 1, also called the pivot. (or leading 1)
o Bach pivot is further to the right than the one above.

« Each pivot is the only non-zero entry in its column.

A less complete process gives us row echelon form, which allows for nonzero
entries are allowed above the pivot

9.4 Gauss Jordan Reduction
1. Given a system A% = b

2. Form augmented matrix [A]5]

9.5 Existence and Uniqueness

If the RREF has a row that looks like: [0,0,0, 0[k] where k is a non-zero
constant, then the system has no solutions. We call this inconsistent

If the system has one or more solutions, we call it consistent.

In order to be unique, the system needs to be consistent.

 Ifevery column is a pivot, the there is only one solution (unique solution)

« Else If most colums are pivots, there are multiple solutions (possibly
o).

 Else the system is inconsistent,

9.6 Superposition, Nonhomogeneous Principle, and
RREF

For any nonhomogeneous linear system A = b, we can write the solutions

as: X = X, + %, Where %, represens veetors in the set of homogencous

solutions, and %, is & particular solution to the original eq

ation.
» RREF with b

‘We can use RREF to find X,,, and then, using the san
replaced by 0, find %,

"The rank of a matrix r equals the number of pivot columns in the RREF.
If r equals the number of variables, there is a unique solution. Otherwise if
there is less, then it is not unique,

9.7 Inverse of a Matrix
+y=1
When given a system of equations like: {: ‘”V o o can tewite it
4 5y =
in the form; [ L ] - [
the inverse which is defined as the matrix that, when multiplied with the
original, equals an Identity Matrix. In other words: A~ 1

é] For this sort of matrix, we can find

9.7.1  Properties

9.7.2 Inverse Matrix by RREF

For an n x n matrix A, the following procedure cither produces A=, or
proves that it's impossible.

1. Form the n x 2n matrix M = [A|1]
2. Transform M into its RREF, R
3. 1f the first n columns produce an Identity Matrix, then the last n are
its inverse. Otherwise A is not invertible.
9.8 Invertibility and Solutions
The matrix vector equation Ax = b where A is an n x n matrix has
o A unique solution x = A~1b if and only if A is invertible
o Either no solutions or infinitely many solutions if A is not invertible.
For the homogencous equation Ax = 0, there is always one solution, z = 0

called the trivial solution.
Let A be an n x n matrix. The following stateme

ts apply.
o Ais an invertible matrix.

o A" is an invertible matrix.

o Ais row equivalent o 1,

o Ahas n pivot columns,

0 has only the trivial solution, X = 0,

o The cquation A%

o The equation A% = has a unique solution for every b in R".

9.9 Determinants and Cramer’s Rule
9.9.1 2 x 2 Matrix

To find the determinant of a 2 x 2 matrix, the determinant s the diagonal
low

- R . 1V products subtracted. This process is demonstrated below
Equations for the predator prey model: 8.2 Addition and Multiplication A Aw o A | b 3. Transform to RREF (3.3) using olementary row operations. (ant=a
An An As | b2 “ a
n " . (Alb] = Au An Aun - (14) o Aand B are invertible matrices of the same order if (AB) = A~'B~! A [ i N
{’ﬂ i ’4 (10)  Each new clement in the matriz is a result of the dot product between the 4. The linear matrix formed by this process has the same solutions as the . . aan (16)
4 = —apF —cpRF corresponding row and column matrices. A A | b initial system, however it is much easier to solve. o If A is invertible, then so is A” and (. =(ant |A] = a2 any — ary -4y
n 5 5

9.9.2 Definitions o AT[=A Li+yeV 10.2.2 Prominent Vector Function Spaces We can call the zero and the set V themselves trivial subspaces, calling 112 Spanning Sets in R"
. the subspace of lines passing through the origin the only non-trivial subspace N
Every element of a n x n matrix has an associated minor and cofactor. I A # 0, then [A~'] = ok 2 ReV « R? - The space of all ordered pairs. nr passing throt e PR\ vector b in R is in Span{¥y, Vo, ..., Vo } where {¥1, Vo, ..., ¥, } are vec

o Minor = A (n—1) x
and jth column of A

(n 1) matxix obtained by deleting the ith row

 Cofactor — The scalar C,; = (€ — 1) 2]

9.9.3 Recursive Method of an n x n matrix A

We can now determine a recursive method for any n x 1
Using the definitions declared above, we use the recursi
follows.

e method that

141 =3 aiiCyj a7
=

Find j and then finish with the rules for the 2 x 2 matrix defined above
in (9.9.1)

9.9.4 Row Operations and Determinants
L

ot A be square,
o If two rows of A arc exchanged to get B, then | B = ~|A|

 Tf one row of A is multiplied by & constant ¢, and then added to another
Tow to get 3, then |/

Al=B|

o If one 1ow of A is multiplicd by a constant ¢, then |B| = c|A]
© T[] = 0, Ais called singular
For ann x n A and B, the determinant |[AB| is given by |45

9.9.5 Properties of Determinants

o If two rows of A are i

erchanged to equal B, then |B| = —|A|

@ If one row of A is multiplied by a constant &, and then added to another
row to produce matrix B, then [B| = [A]

o Tf one row of A is multiplied by k to produce matrix B, then |B| = kA|

o If |AB| = 0, then either |A] or |B| must be zero.

I A'is an upper or lower triangle matrix’, then the determinant is the
product of the diagonals.

I one row or column consists of only zeros, then 4] = 0.

© 1f two rows or columns are equal, then

o Als invertible,
o A" is also invertible

o Ahas n pivot columns.

o lAl#0

© 16 [A] = 0 it is called singular, otherwise it is nonsingular

9.9.6 Cramer’s Rule

For the n x n matrix A with |A| # 0, denote by A, the matrix obtained
from A by replacing its ith column with the column vector b, Then the ith
component of the solution of the system is given by

10 Vector Spaces and Subspaces

Avector space Vs & non-empty collection of elements that we call vectors, for
which we can define the operation of vector addition and scalar multiplication.

1. Addition: X +§
2. Sealars: % where ¢ is a constant.

that sa

fy the following properties:

fix s one where cither the lower or upper half is zero, e,

which can be condensed into a single equation: € + dy € V which is
called closure under linear combinations.

10.1 Properties

We have the properties from hefore, as well as new ones.

1 X+¥ €V« Addition

2. X €V ¢ Scalar Multiplication

3. %+0 =% « Zero Element
4%+ ( (%) + % = 0 « Additive Inverse
5. (X+§)+2 =%+ (§+2) ¢ Associative Property

8. (% +§) = X + § « Distributive Property

9. (c+d)X

%+ d% + Distributive Property

10 ¢(d%) = (ed)¥ + Associativity

102 Vector Function Space

A vector function space is just a unique vector space where the elements of
the space are functions.

Note, the solutions to linear and homogencous differential equations form
vector spaces.

10.2.1 Closure under Linear Combination

& +dy € V whenever %5 € V and c.d € R (19)

© B — The space of all ordered triples.
© B" > The space of all ordered n-tuples.

P — The space of all polynomials.

o B, — The space of all polynomials with degree < n.
M., = The space of all m x n matrices,

© ©(I) — The space of all continuous functions on the interval I (open,

closed, finite, and infinite]

 ©(1) = Same as above, except with n continuous derivatives,

© ©" — The space of all ordered n-tuples of complex mumbers,

10.3  Vector Subspaces
Theorem: A non-cmpty subset W of a vector space V is a subspace of V if
it is closed under addition and scalar multiplication:

@ 16V EW, thanii+VeW.

e 1fdeWand ce R, than cii € W.

We can rewrite this to be more efficient;

16,V €W and a,be R, than aii + bv € W. (20)

Note, vector space does not imply subspace. All subspaces are vector
spaces, but ot all vector spaces are subspaces.

To determine if it is a subspace, we check for closure with the above
theorem.

There are only a couple subspaces for ?

o The zero subspace {(0,0)}.
 Lines passing through the origin.

o B2 itscll.

We can classify R? similarly:

o Trivial:
~ Zero subspace
s

Non-Trivial
~ Lines that contain the origin.
~ Places that contain the origin
10.3.1  Examples
 The set of all even functions
 The set of all solutions to " — "t +y = 0.

o (PEBPER)=P@3)}

11 Span, Basis and Dimension

111 Span

The span of a set {¥1,%s, ..., ¥,} of vectors in a vector space ¥, denoted by
Span{¥y, ¥z, .., ¥} is the set of all linear combinations of the vectors

1111 Example

3 0
For example, I = | 2 | and = | 2
0

Then we can write their span as

0 3a
2| =|2+2
2 2

ai+bV=a

tors in R", provided that there is at least one solution of the matrix-
vector equation AX = b, where A is the matrix whose column vectors
are {V1,%2,. ¥

113 Span Theorem

For a set of vectors {¥i., Vs
is subspace of V.

¥,} in vector space V. Span{¥,. Va. ... ¥,.}

11.4  Column Space

For any m x n matrix A, the column space, denoted Col A, is the span of
the column vectors of A, bspace of [mathbbR".

11.5 Linear Independence

Aset {¥1, 2, ¥} of vectors in vector space V is linearly independent
if o vector of the set can be written as a lincar combination of the others,
Otherwise it is linearly dependent

This notion of linear independence also carries over to fnction spaces
A set of vector functions {¥,¥,......¥,} in a vector space V is lincarly
independent on an interval I .r for all £in T the only solution of 1%, +c:¥2 +

+ pVa = 0 for (cr.ca,....co €R) s ¢ = 0 for all i

I for any value t of ¢ there i any solution with ¢; # G, the vector f
are linearly dependent

11.5.1  Testing for Linear Independence

L (a) Put the  system_  in  matricvector  form:
o
e
Vi V2 Vv,
L 4

(b) Analyze Matrix
ho coumn vectrsof  ar inecly independent if o oy i the
solution X is
“Nuv of the fllowing ks satisy this condition fo e soluion

unique, which means ¢, = 0

o As invertible,




o Ahas n pivot columns. are the column vectors of the identity matrix 1,.

. A[£0
2. Suppose we have a set of vectors V. {V, Vs, ..., V,} € R, dim(¥) = 11:6:2 Example
“Then the set ¥ s linearly dependent if n > m where 5 is the mmber of A vector space can have different bases.
clements in V. Note, this cannot prove the opposite. It only gocs one e standard  basis  for (6} for &
1 4 0 1

(3] v 1] o (1301}

Bt another basis for R? is given by:
1

way. o {2 ). 5 |1 Is dependent
3 6 0
3. Columns of A are lincarly independent if and only if A = 0 has only
the trivial solutions of n.

N

11.5.2  Linear Independence of Functions 11.7 Dimension of the Column Space of a Matrix

One way to check a set of functions is to consider them as a one dimensional Essentially, the number of vectors in a basis,
veetor. V() = fu(t) Another method is the Wronskis

“To find the Wronskian of functions fi. fo,.... f, on 1 1171 Properties
Lok &  The pivot columns of a matrix A form a basis for Column A
W ik ) (21)
[ fowee o The dimension of the column space, called the rank of A, is the number
gl of pivot columns in A. rank A = dim(Col(4)

IEW # 0 for all  on the interval 1, where fi, fa, ... fu are defined, then the

function space is a lincarly independent set of functions on I nr.

i

Tnvertible Matrix Characterizations

Let A be an n x n matrix. The following are true.
11.6 Basis of a Vector Space
o Ais invertible
¥} is & basis for vector space V provided that

The set {71, Vs,
o (91.Va.... 0, s lnearly independent o The column vector of A s linearly independent

of A'is a pivot colu

o Span{¥i. )=V o Every colt

11.6.1 Standard Basis for 2" o The column vectors of A form a basis for Col(4).

12.1 Harmonic Oscillators
12,11 The Mass-Spring System

Consider an object with mass m on a table that is attached to a spring
attached to wall. When the object is moved by an external force, we can
model its behavior using Newton’s Second Law of Motion: F = mi where
F s the sum of the forces acting on the object.

We have three different types of forces

o Restoring Force: The restorative force of a spring is o the amount
of stretching/compression: Prasoring = —k

* Damping Force: We also assume that friction exists, and therefore
a damping force o the velocity of the object: Fiuuping = —bit Where
damping constant b > 0 and small for slick surfaces.

We also allow for an external force to drive the

ft)

Thus we get our cquation for a Simple Harmonic Oscillator
mi + bi + ks

o External Forc
motion: Fxtema

« Constants m > 0.k > 0,6 >0
© When b =0, the motion is called undamped. Otherwise it is damped

o if J(t) = 0, the equation is homogencous and the motion is called
nforced, undriven, or free. Otherwise it is forced, or driven.

1212 Solutions

When we say solution, we are referring to a solution that gives us z, in other
words, the position of the mass at any given time f as a function of . Duc to
the inherent nature of derivatives, this may or may not have undetermined
constants (often denoted as [er, ¢, ) as will be set by initial values
given (similar to first order differential equations).

Eater e wil determne how o sohve these eations fly. howeser a qick

“This gives us one form of the solution, however we can also find an alterate
form:

2(1) = Acos (wnt — )

‘Where

 Amplitude A and phase angle § (radians) are arbitrary constants deter-
mined by initial conditions.

 The motion has circular frequency wy

/& (radians) per second, and

a natural frequency fo = 52

 The period T (scconds) is 2

« The above solution is a horizontal shift of A cos(uyt) with phase shift
To convert between the two forms, apply the following formulas
Acosd

Asiné

To solve the M:l»«Synm" System with both damping and forcing as given
by the following equatior

mi + i+ k= Fy cos(u;t

we can apply the following formula. (Note, some concepts
later in the text, refer back if needed)

A=VETE [

tand =

are explained

1. (1) has three possible solutions. See (12.3).

2. ,(t) can be assumed as Acos(wst) + Bsin(wyt) See (125

3w

&

PR T,

12.1.3  Phase Planes

for which p and g are contimuous on (a,b), any two lincarly independent
solutions {y1.,} form a basis of the solutions space S, and every solution y
on (a.b) can be written as

Y(t) = e (t) + eapplt) = (c1,02) ER

To generalize we can apply the same principle to nth order differential

For any autonomous second order differential equation
Ay

the phase plane is the two (lmwlmuxml graph with i and 7 axes (which

are the position and velocity respec 2. This phase plane has a vector
field with direction given by equations.
e
Hog=i Theorem 4 (Existence and Uniquemess for nth Order Dif-

;i
Vog=i ferential  Equations). Let  py(t),pa(t),...,palt)  be  continuous
Trajectorics can be formed by parametrically combining the vectors 0 @ funetions on (0.0 containing e cor any initial values
path. A graph showing these trajectories is called a phase portrait Ao Ay ot € there exists a unique solution y(t) to the IVP
The differential equation is also equivalent to the system of equations: —y"(tp, (15" (1)) + pr (15"~ () + pa(t)y™ (1) + - + pu(t)y(t) = 0
=y lto) = Ao,y (o) = Av,.o..y" (o) = 4,
i=i=f(t)
Tho biggest advamtage with phase portrats is that s sl th et Bo ot andar et st ous sltion space thesen (3) spple
ally. This can e just replace the term “2” and “second” with “n” and “nily

1

solve the differential equation graphically, and not mu
much easier if done correctly.

12.2  Properties and Theorems 12.3 Roots

1f given a second order cquation in the form ajj + bj + ey = 0, we can use
our previous definition of a first order differential cquation to find an easicr
method of solving. At its core, this method consists of converting our given
second order differential equation and converting it into a quadratic equation,
using which we can solve for the homogencous solution.

For the linear homogencous, second-order differential equation
¥ p(t)y +altly =0
with p and g being continuous functions of ¢, there exists a two-dimensional
vector space of solutions
Rewriting the above cquation gives us
y'(0) = [ty
which gives us the existence and uniqueness theorem for the second order
equation

aj+bitey=06art +brte=0 (24)

The resulting equation is called the characteristic equation. Solutions to
Theorem 2 (Existence and Uniquencss). Let p() and g(t) be continuous on this cquation are called characteristic roots. Due to the nature of quadratic
a.b containing to. For any A and B in B, there ezists a unigue solution y(t) cauations, there are three different possibilities for the solution:
defined on (a,b) to the IVP " + p(t)y' + q(t)y = 0.y(ts) = A.y/(ta) =
o Two distinet real roots or zeros
A basis exists for the general second order equation.

6.6, €, e Rank A=n T~ 4 g o e .
{ ; Rank A4 answer can be found by applying the following formulas.  After learning R Theorem 3 (Solution Space). The solution space S for a second order * One real root (a double root)
where the methods given aead, be sure to come back and determine how these homogencous differential equation has a Dimension of 2 .
1 0 0 X . " . solutions were determined 5 B = mgaway * Two imaginary roots
0 1 0 (22) 12 Higher Order Linear Differential Equa- Siven Equation: mi + kr = 0 For any linear second order homogencons differential equation on (a. b).
G=|0|a=|0 0 tions 2(t) = 1 cos (wot) + czsin (wu') As you can see, this is a pain. Values A and B in particular are tedious '+ Py +atly Thw are summarized as follows.
T to calculate. Despite this, as you'll see later, these methods can be easier i comept of & ples plams is identical to the ons introduced in (77) with the methods allows s to generalize for higher order differential equations
0 0 1 mi +bi + kx = f(t) (23) “w=\m than solving by hand. exception of  replacing y. \ml ﬂml mlllnum that would be otherwise impossible.
" n 2

Casc One [ el Vel Fioots
As0 Pry = S

Overdamped Notion 16 y,(t) is a solution of L(y) = fi(t). then y(t) = exy(t) = capa(t) + - +
() = 16" + cpe™t Cay(t) is a solution of L(y) = e fu(t) + eafa(t) + -+ + cafult)
In oxder to apply this, we need the non-homogencous principle.

Tase Two | Roal Repeatcd Root (‘ulm«lh [mm,ml Motion
A=0 r=-%

= wlt) = Theorem 5 (Non-Homogeneous Principle). y(t) = ya(t) + y,(t)

G Thvee [ Comples Coniete oot | Dty Woion What this basically boils down to is making educated guesscs in order
Ao +8i xcos (3) + exsin (31)) | to identify the form of the particular solution, as well as eventually the
particular solution itself. Once the particular and homogeneous solutions
arc identificd, add them to determine the solution. The following table may

help identify common formats and solution types.

Table 1: Roots for Second Order Differential Equations in Characteristic

Equation Form | f(0) | (1)
G A
124 Linear Independence e 0
The Solution Space Theorem (3) provides us with the mumber of solutions Coon(wr) + Dain(et) Agcos(wt) + Bysin(wt)

in a bases for an nth order homogeneous differential equation (n). B P.er Ayt
Pu(t) cos(wt) + Qu(t) sin(wt) Au(t) cos(wt) + By(t) sin(ut)
Ce* cos(wt) + De* sin(wt) Aoe* cos(wt) + BoeM sin(wt)
]| Pult)ek cos(wt) + Qu(t)eM sin(wt) | Ay(t)ek cos(wt) + B, (t)e sin(wt)

 Starting with m solutions for the nth order case, if m > n the solutions
can no be independent.

© 1f m = n, we must test using the concepts from before.

Table 2: Guesses for Particular Solutions

o 1f m < n, the set does not span the space.
* Pu(t),Qult), Au(t), Bu(t) € B

o Ay, By € Py

12.4.1 Wronskian

‘The Wronskian also tells us about the lincar independence of a set of functions

This Wronskian is identical to the Wronskian previously defined (21)
Su]»pr)d‘ {022y} i a set of solutions of an nth order homogencous

flerential equation.

L(y) = an(t)y" + auy (1)’

o kwCDeR

oln

Fo k() +ao()y =0 pre

both terms must be in g, even if only one term is

ent in ).

If amy term or terms of y, is found in g, multiply the term by ¢ or 2 to
e

L1 Wi,y
minate the duplication,

independent

Lua] # 0 at any point on (a,b), then the set is linearly

2. 1 W[yi,y2, ... ya] = 0 at every point on (a,b), then the set is linearly

dependent.

12.6 Variation of Parameters

We've already used variation of parameters to find the solutions of '+ p(t)y =
J(t). This same strategy can be applied to second order equations in the
form:

12.5 Undetermined Coefficients

Let’s assume L(y) = au(6)y" +aua ()" 4+ +as(t)y’ +ao(t)y = 0 where " +p(t)y’ + a(t)y = (1)

1. Find two linearly independent solutions of the second order differential
equation y” + p(t)y’ + q(t)y = f(t) this having the general solution
n(t) = e () + caplt)

2. To find the particular solutio ualt) = cun(t) + capn(t) and swap
constants to get y,(t) = v )y () + vy(t)y(t) where v, and v, are
unknown functions

take

3. We find vy and v by substituting our new equation into our first

Differentiating by the product rule we get )(t) = o1y, + 2y + vy +1hy2
4. Before we calculate 4! we choose an awxiliary condition, that v; and v,
iy + vhys = 0 where we get o, = v1y] + yhvs

5. Differentiating again we get y;/(t) = v194' + vap’ + viy} + vy}

6 We wish to get L(y) = /' py/ + gy = J Substituting for what we hae
solved for gives vly] + vjy}

i)+ ath =0

h + vy =1

7. We now have two equations for our two unknowns, {

8. Solve the system of cquations and insert

Another method is to use Cramer's Rule (18) where

o
"

P A R U

u n n v

N Y v v
The denominator in this case is the Wronskian. It will not be zero because
both yy and g, are linearly independent. Integrate these to find vy and v,

13 Linear Transformations

Vectors that aren’t rotated by linear transformations, but are only scaled or
flipped are called eigenvectors.

Theorem 6 (Bigenvalues and Eigenvectors). Let T : V = V be a linear

transformation. A scalar X is an eigenvalue of T is there is a nonzero vector
V€V such that T(¥) = A¥.

To compute these eigenvalues and eigenvectors, follow the following steps®
1. Wite the characteristic equation |A — AT| = 0

2. Solve the characteris

ic equation for the eigenvalues,

3. For each cigenvalue, find the cigenvector by solving (A — \:J)

As yowd imagine, once the size of a matrix becomes larger than 2 or 3,
these steps are tedious and long. Computers to the rescuel

13.1 Special Cases
Some special cases to watch out for

o Triangular Matrices: The cigenvalues of a triangular matrix (upper
or lower) appear on the main diagonal

The cigenvalues can be determined with A —

3 3 Matrices: Similarly: A’ —
det(A) =0

Tr(A) - A (Tr(A?) — TP(A)) —

13.2  Eigenspaces

The set of all eigenvectors belonging to an eigenvalues X together with the
zer0 vector form a subspace of R" called the eigenspace.

Theoremuﬁvmpm) For rz(hmyuxmlm X of a linear transformation
>V, the cigenspace By = {V € V| T(¥) = AV} is a subspace of V.

Theorem 8 (Distinct Bigenvalue). Let A be an nxn matriz. If Ay A, ...\,
are distinet eigenvalues with corresponding eigenvectors ¥y, Va. ... ¥y, then
{¥1.Va.....¥,} is a set of lincarly independent vectors. In other wonds, if
each cigenvalue has one associated eigenvector, than that set of eigenvectors
is lincarly independent.

Such a monzero vector ¥ is called an eigenvector of T 2
1f the linear transformation T is regenerated by an n x n matric A where
=B and T(3) = AV, then A and ¥ are chameterized by the equation

e, the same exact steps are followed even if we have A to be in terms of i. The
only r\wplum is that we are no longer in
real cigenspace (Sec (13.2))

Where Tr(A) i the Thace of  matix, . the sum of the main dingonal.

in any " space, and therefore there will be no

o The domain of the linear transformatic
functions.

13.3  Properties of Eigenvalues s a vector space of vector

Let A be an n x n matrix.
o The solution set is also a vector space of vector functions.
o Xis an cigenvalue of A if and only if |A — XI| =0
- o The eigenspace for each eigenvalue is a one dimensional line in the
 Ais an cigemvalue of A if and only if (A ~ A)¥ = 0 has a non-trivial  direction of a vector in R
solution.

© A has a zero cigenvalue if and only if |A] =0 14 Linear Systems of Differential Equations

© A and A” have the same characteristic polynomials and eigenvalues. Ty define the linear first order differential equations syster
ensional first order differential equations system on an open
one that can be written as a matrix vector equation.

1 n-di
interval 1

13.4 The Mind-Blowing Part

Remember Characteristic Roots (12.3)? Well, they are identical to cigenval- () = AR + (1) (25)
ues as is evidenced below

Given the linear second order differential equation: o A(t) is an n x n matxix of contimuous functions on I

V- -2y =0

we know that it has a characteristic equation of o J(t) is an n x 1 vector of continuous functions on I

rer 2= (-0t o X(t) is an n 1 solution vector.
with roots of
) o I (1) =0, the systenm is homogeneons
e

which creates the general solution of .

i s 1 14.1 Graphical Methods

In !'w(“uu 12.1.3 we saw that we can write a second order differential We use the phase plane from before to accurately represent these systen

equation s a system of equations:

i=y 1411 Nullelines
i=2y

whic s the matr form & = A%

The o nullcline is the set of all points with vertical slope which occur on the
curve obtained by solving 1’ le h n\\llxlmv is the same except
A= with horizontal sope and is found with = erection

,/ 21

we get a fixed equilibrium point.
The characteristic equation |A — AT| = 0 for this matrix A is \2— A s ! b
which has the same eigenvalues as our original equation has characteristic

At the i

roots. 1412 Eigenvalues

Eigenvalues play a large role in phase planes as well. For an autonomous
13.4.1 Properties of Linear Homogencous Differential Equations and homogencon of differential linear system of equations:
with Distinct Eigenvalues

_ o Trajectories are toward or away based on the sign of the cigenvalue
For the differential equation ¥ = A with distinet cigenvalues, the following

t € some interval I To apply this method, follow these steps. AV properties apply. o Along each eigenvector is the separatria that seperates different curves.
I i 15
 Equilibrium arrives at origin (Symmetric) 1431 Interpreting Non-Real Eigenvalues The signs of the cigenvalues direct the trajectory behavior in the phase (b) Star Node: 1f X has two linearly independent cigenvectors we call v Figenvalics . Tivcared Sptem B ol Syt
o portrait. t an attracting or repelling star node. The sign of A gives its - ey T o L
« Speed is determined by ma of the eigenvalues. [ cos(8r) —sin(3t) | [ B T BT Atracting Nolt Asvmpratcally St Atracting Kol Asymptotelly S
Speecis determined by magninde of the igensalue [sm(w) +eos(3) | | G We can label the eigendirections fast or slow based on the magnitude of stability. Roots 0<da<h Repelling Node Unstable Repelling Node Unstable
the cigenvalues. Whichever it is, the trajectories are parallel to fast and In both e £\ gives its stability Saddle Unstable Saddle - Unstable
14.2 Linear Systems with Real Eigenvalues « The fist variable defines the expansion. perpendicaar 10 slow n both cases, the sign of A gives its stability. e Fepeied T S o Dt | Aoty S Mractiog Node o Spiel | Asymptoriealy Stabte
. Three possibilities « IFA > 0, trajectories go to infinity, paralle] to ¥ Repeling Star or Degenerate | Unsable Repelling Node or Spiral | Unstable
To solve a system in the form ~ Ifa > 0 Growth without bound, Three possibilities 1F A > 0, trajectories go to infinity, parallel to Repe P i
~lfa<0-» Decay to 0 « Attracting Node (A, < A < 0) o IF A <0, trajectories approach the origin parallel to V. S T T T — Tepeling Spal T
« 16X =0, here exists a line of fixed points at the eigenvector i Atrcing Sp Aemptoveally Sable | Aacing Spiral Aemptticely Sl

1. Find cigenvalues of A ~ If a = 0 — Period solutions.

2. Find associated eigenvectors, » The second defines rotation.

3. Solution is in the form (for a 2 x 2 matrix at least) our solution is in ~ Counterclockwise for § > 0
the form: X(t) = MV + "V, — Clockwise for 5 < 0
If there are insufficient eigenvalues (repeated cigenvalues), follow the @ The third defines tilt and shape.
method below.
14.4 Stability and Linear Classification
1. Find the one cigenvalue

tant solution % = € is called an equilibrium solution. An equilibrium
solution in the phase plane is a fixed point.

2. Find its cigenvector.

3. Find ¥ such that (4 — M)d = ¥. o If solutions remain close and tend to € as ¢ = 0o we call this asymptot-

ally stable.
4. Solution: R(t) = c;eM¥ + e (t¥ + ). ically stable
 If solutions are neither attracted nor repelled, we call this neutrally
stable.

14.3 Non-Real Eigenvalues
o If other, it is unstable.

If we have a matrix A with non-real eigenvalues A A, = o & id, the
corresponding cigenvectors are also complex conjugate pairs in the form:
V=Pt 14.5 Parameter Plane

To solve:
14.6 Possibilities in the Parameter Plane
1. For the first eigenvalue, find its eigenvector. The second eigenvector is

a pair of the fst We have to consider a couple different possibilities,

1. Real Distinet Eigenvalues (A > 0)

2. Construct the real and non-real parts
%, = e (cos(3)p — sin(5)d) When A = (Tr(A))? — 44| > 0 we have real cigenvalues Ay # Ay
% corresponding linearly independent eigenvectors v, and ¥ with general

%, = e (sin(B1)p + cos(31)d) corepo

3. The general solution is defined as () = 1%,(1) + c2%i(f) R = e 4 e,

 Repelling Node (0 A, < As)
o Saddle Point (A <0< Ay)

2. Complex Conjugate Eigenvalues (A < 0)
When A = (Tr(4))? - 4|4 < 0 we get non-real eigenvalues.
Np=atpi
where a = 22 and § = V=A. a and § are real. The real solutions
are given by:
%, = e (cos(A1)P - sin(A1)d)
i = ! (sin(30) + cos(3)d)

For complex cigenvalues stability behavior depends on the sign of a.
o Attracting Spiral (o < 0)
« Repelling Spiral (a > 0)
o Center (0 =0)

3. Borderline Case: Zero Eigenvalues (|| = 0) If one cigenvalue
s zero we get a row of non-isolated fixed points in the cigendirection
associated with the eigenvalues, and the phase plane trajectories are all
straight lines in direction of other eigenvector

If two eigenvalues are zero, there is only one eigenvector, along which
we have a row of non-isolated fixed points. Trajectories from any other
point in the phase plane must be parallel to the one cigenvector in the
direction specified by the system.

4. Borderline Case: Real Repeated Eigenvalues (A = 0)

In this situation we have two cases to contend with,

) Degenerate Node: 1 X has one lincarly independent cigenvector we
call it degenerate. The sign of A gives its stability.

15 Non-Linear Systems
15.1 Properties of Phase Plane Trajectories in Non-
Linear 2 x 2 Systems
1. When uniqueness holds, phase plane trajectories camnot cross.
2. When the given functions f and g are continuous, trajectories are
continuous and smooth.
15.2  Equilibria
Phase Portraits can have more than one, or none at all. To find a system’s
equilibria, solve +' and y/ simultancously.
15.3 Nullclines

Nullelines in this case are the same as before.

15.4 Limit Cycle

Alimit eycle is a closed curve (representing a periodic solution) to which
other solutions tend by winding around more and more closely from either
inside or outside.

16 Linearization

Theorem 9 (Jacobian). For a given system of equations.
o' = fla.y)

v =gty

Table 3: Table of Behavior Based on the System’s Jacobian Matrix Eig
values

where f and g are twice differentiable, the linearized system at an equilib-
rium point (z,.y,) translated by u =z — . and v =y — y, is

B B | o)

ul .
[ ] aesye) where Jaespe) = | 700ty et )
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