
1 Separation of Variables

y′ = 3t2(1 + y)→ dy

dt
= 3t2(1 + y)

dy

1 + y
= 3t2 →

∫
dy

1 + y
=

∫
3t2

ln |1 + y| = t3 + c→ |1 + y| = ecet
3

y = cet
3 − 1, k 6= 0

2 Approximation Methods

2.1 Euler’s Method (Tangent Line Method) - 1768

With a given function y′ = f(t, y) and a given set point p0 we can approximate
the line point by point.

For the initial value problem y′ = f(t, y), y(t0) = y0

Use the formulas

{
tn+1 = tn + h

yn+1 = yn + hf(tn, yn)

(1)

2.1.1 Example

Obtain Euler approximation on [0, 0.4] with step size 0.1 of

y′ = −2ty + t and y(0) = −1

h = 0.1,

{
t0 = 0

y0 = −1

→

{
t1 = t0 + h = 0.1

y1 = y0 + hf(t0, y0) = −1

→

{
t2 = t1 + h = 0.2

y2 = y1 + hf(t1, y1) = −0.97

→

{
t3 = t2 + h = 0.3

y3 = y2 + hf(t2, y2) = −0.9112

→

{
t4 = t3 + h = 0.4

y4 = y3 + hf(t3, y3) = −0.826528

2.2 Runge-Kutta Method of Approximation

If we have an IVP, we can calculate the next values with a process similar
to (1) {

tn+1 = tn + h

yn+1 = yn + hkn2

Where

kn1 = f(tn, yn)

kn2 = f

(
tn +

h

2
, yn +

h

2
kn1

) (2)

For more precision, use the fourth order Runge-Kutta method. It is the
most commonly used method both because of its speed as well as its relative
precision. {

tn+1 = tn + h

yn+1 = yn + h
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(kn1 + 2kn2 + 2kn3 + kn4)

Where

kn1 = f(tn, yn)

kn2 = f

(
tn +

h

2
, yn +

h

2
kn1

)
kn3 = f

(
tn +

h

2
, yn +

h

2
kn2

)
kn4 = f (tn + h, yn + hkn3)

(3)

3 Picard’s Theorem

Theorem 1 (Picard’s). Suppose the function f(t, y) is continuous on the
region R = {(t, y) | a < t < b, c < y < d} and (t0, y0) ∈ R. Then there exists
a positive number h such that the IVP has a solution for t in the interval
(t0 − h, t0 + h). Furthermore, it fy(t, y) is also continuous on R, then that
solution is unique.

4 Linearity and Nonlinearity

An equation F (x, x2, x3, . . . , xn) = c is linear if it is in the form a1x1 +a2x2 +
· · ·+ anxn = c where an are constants.

Furthermore, if c = 0, the equation is said to be homogeneous.
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We can generalize the concept of a linear equation to a linear differential
equation. A differential equation F (y, y′, y′′, . . . , yn) = f(t) is linear if it is

in the form: an(t)d
ny
dtn

+ an−1(t)
dn−1y
dtn−1 + · · ·+ a1(t)

d1y
dt1

+ a0(t)
d0y
dt0

= f(t) where
all function of t are assumed to be defined over some common interval I.

If f(t) = 0 over the interval I, the differential equation is said to be
homogeneous.

We will also introduce some easier notation for linear algebraic equa-
tions: ~x = [x1, x2, . . . , xn] and for linear differential equations: ~y =
[yn, yn−1, . . . , y′, y]

We will also introduce the linear operator L:
L(~x) = a1x1 + a2x2 + · · ·+ anxn

L(~y) = an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a1(t)

d1y

dt1
+ a0(t)

d0y

dt0

4.1 Properties

A solution of the algebraic is any ~x that satisfies the definition of linear
algebraic equations, while a solution of the differential is for any ~y that
satisfies the definition of linear differential equations.

For homogeneous linear equations:

• A constant multiple of a solution is also a solution.

• The sum of two solutions is also a solution.

Linear Operator Properties:

• L(k~u) = kL(~u), k ∈ R.

• L(~u + ~w) = L(~u) + L(~w).

4.1.1 Superposition Principle

Let ~u1 and ~u2 be any solutions of the homogeneous linear equation L(~u) = 0.
Their sum is also a solution. A constant multiple is a solution for any
constant k.

4.1.2 Nonhomogeneous Principle

Let ~u1 be any solution to a linear nonhomogeneous equation L(~u) = c
(algebraic) or L(~u) = f(t) (differential), then ~u = ~un + ~up is also a solution,
where ~u is a solution to the associated homogeneous equation L(~u) = 0.

4.2 Steps for Solving Nonhomogeneous Linear Equa-
tions

1. Find all ~un of L(~u) = 0.

2. Fina any ~upofL(~u) = f .

3. Add them, ~u = ~un + ~up to get all solutions of L(~u) = f .

5 Solving 1st Order Linear Differential Equa-

tions

5.1 Euler-Lagrange 2-Stage Method

To solve a linear differential equation in the form y′+ p(t)y = f(t) using this
method:

1. Solve y′ + p(t)y = 0 by separation of variables to get yn = ce−
∫
p(t) dt

2. Solve v′(t)e−
∫
p(t) dt = f(t) for v(t) to get the particular solution yp =

v(t)e−
∫
p(t) dt

3. Combine to get

y(t) = yn + yp = ce−
∫
p(t) dt + e−

∫
p(t) dt

∫
f(t)e

∫
p(t) dt dt (4)

5.2 Integrating Factor Method

1. Find the integrating factor µ(t) = e
∫
p(t) dt (Note,

∫
p(t) dt can be any

antiderivative. In other words, don’t bother with the addition of a
constant.)

2. Multiply each side by the integrating factor to get µ(t)(y′ + p(t)y) =
f(t)µ(t) Which will always reduce to d

dt

(
e
∫
p(t) dty(t)

)
= f(t)e

∫
p(t) dt

3. Take the antiderivative of both sides e
∫
p(t) dty(t) =

∫
f(t)e

∫
p(t) dtdt+ c

4. Solve for y

y(t) = e
∫
p(t) dt

∫
f(t)e

∫
p(t) dtdt+ ce

∫
p(t) dt (5)
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5.2.1 Example

dy

dt
− y = t

µ(t) = e
∫
−1 dt → e−t

e−ty =

∫
te−t dt→ e−t(−t− 1) + c

y(t) = cet − t− 1

6 Applications of 1st Order Linear Differen-

tial Equations

6.1 Growth and Decay

The function
dy
dt

= ky

can be called the growth or decay equation depending on the sign of k.
We can explicitly find the solution to these equations:

For each k, the solution of the IVP

dy

dt
= ky, y(0) = y0

Is given by

y(t) = y0e
kt

(6)

We can use these equations for a wide variety of different equations such
as continuously compounding interest:

dA

dt
= rA,A(0) = A0

A(t) = A0e
rt

(7)

6.2 Mixing and Cooling

We can also use these models for mixing and cooling problems. A mixing
problem consists of some amount of substance goes into a receptacle at a
certain rate, and some amount of mixed substance comes out. We can model
is as such.

If x(t) is the amount of dissolved substance, then

dx

dt
= Rate In− Rate Out

Where

{
Rate In = Concentration in · Flow Rate In

Rate Out = Concentration in · Flow Rate Out

(8)

We can also use these for cooling problems. Newton’s law of cooling is as
follows.

dT

dt
= k(M − T )

Where

{
T → Temperature of the Object

M → Temperature of the Surroundings

(9)

7 Systems of Differential Equations

If one or more functions are dependent on other functions, then we call them

coupled. Otherwise we call them decoupled.

Coupled

{
y′ = xy

x′ = yx

Decoupled

{
y′ = yt

x′ = xt

7.1 Autonomous First Order System

Autonomous systems are not dependent on t, so we can treat them a little
differently. For these equations we can use a phase plane, vector field, and
the trajectory of the solution.

The functions x(t) and y(t) can give us a parametric curve. This means
that at any given point on the curve, we also have a tangent vector given by
dy
dt

anddx
dt

.
Every solution of a system we call a state of the system, and the collection

of all the trajectories and states is called a phase portrait.
An equilibrium point for this two dimensional system is an (x, y) point

where dy
dt

= 0 = dx
dt

7.2 Graphical Methods for Solving

Sketching is a pain in the ass. . . Therefore there are a couple tricks that we
can use to make our lives easier.
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We can use nullclines to more easily draw the solutions. Nullclines are
an adaptation of previously mentioned isoclines (??). A V nullcline is an
isocline of vertical slopes where x′ = 0. An H nullcline is an isocline of
horizontal slopes where y′ = 0. Equilibria occurs at the point where these
two nullclines intersect.

Note, when existence and uniqueness hold for an autonomous system,
phase plane trajectories never cross.

7.3 Quick Sketching Outline for Phase Portraits

1. Nullclines and Equilibria

• Where x′ = 0, slopes are vertical.

• Where y′ = 0, slopes are horizontal.

• Where x′ = y′ = 0, we have equilibria.

2. Left-Right Directions

• Where x′ is positive, arrows point right.

• Where x′ is negative, arrows point left.

3. Up-Down Directions

• Where y′ is positive, arrows point up.

• Where y′ is negative, arrows point down.

4. Check Uniqueness
Where phase plane trajectories do not cross, we have uniqueness.

7.4 Applications of Systems of Differential Equations

7.4.1 Predator-Prey Assumptions

In the absence of foxes, the rabbit population will grow with the Malthusian
Growth Law: dR

dt
= aRR, aR > 0 In the absence of rabbits, the fox population

will die off according to the law: dF
dtt

= −aFF, aF > 0 When both foxes and
rabbits are present, the number of interactions is ∝ the product of the
population sizes, with inverse behavior. Thus we can get the Lotka-Volterra
Equations for the predator prey model:{

dR
dt

= aRR− cRRF
dF
dt

= −aFF − cFRF
(10)

8 Matrices

8.1 Definitions

A =


a1 a2 a3 · · · an
b1 b2 bj · · · bn
c1 c2 c3 · · · cn
...

...
...

. . .
...

m1 m2 m3 · · · mn

 (11)

We can also describe these matrices by saying it has order m× n where
m and n are the row and column sizes respectively. Two matrices are equal
if they have the same m and n and the values contained are equal. We can
also have matrices with orders m× 1 or n× 1 which are called column and
row vectors.

If all entries are 0, we call it a zero matrix; however if all entries but the
diagonal are zero, this is called an diagonal matrix. These diagonal number
are called diagonal elements. A special diagonal matrix is the identity matrix,
which is formed when the diagonal elements are ones.


1 0 · · · 0
0 1 · · · 0
...

... 1
...

0 0 · · · 1

 (12)

8.2 Addition and Multiplication

Each new element in the matrix is a result of the dot product between the
corresponding row and column matrices.
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A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
An1 An2 · · · Anm



B =


B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bm1 Bm2 · · · Bmp



AB =


A1 ·B1 A2 ·B1 · · · A3 ·B1

A2 ·B1 A2 ·B2 · · · A2 ·B3
...

...
. . .

...
Am ·B1 Am ·B2 · · · Am ·Bn



(13)

8.3 Matrix Transposition

We can flip a matrix diagonally so that its columns become rows and its
rows become columns. We call this the transpose of the matrix, written AT .

8.3.1 Properties

• (AT )
T

= A

• (A + B)T = AT + BT

• (kA)T = kAT for any scalar k.

• (AB)T = ATBT

9 Matrices and Systems of Linear Equations

9.1 Augmented Matrix

An augmented matrix is where two different matrices are combined to form
a new matrix.

[A|b] =


A11 A12 · · · A1m b1
A21 A22 · · · A2m b2

...
...

. . .
...

...
An1 An2 · · · Anm bn

 (14)

9.2 Elementary Row Operations

• Interchange row i and i R∗i = Rj, R
∗
j = Ri

• Multiply row i by a constant. R∗i = cRi

• Leaving j untouched, add to i a constant times j. R∗i = Ri + cRj

These are handy when dealing with matrices and trying to obtain Reduced
Row Echelon Form (9.3).

9.3 Reduced Row Echelon Form

[A|b] =

 1 0 0 b1
0 1 0 b2
0 0 1 b3

 (15)

• 0 rows are at the bottom.

• Leftmost non-zero entry is 1, also called the pivot (or leading 1).

• Each pivot is further to the right than the one above.

• Each pivot is the only non-zero entry in its column.

A less complete process gives us row echelon form, which allows for nonzero
entries are allowed above the pivot.

9.4 Gauss Jordan Reduction

1. Given a system A~x = ~b

2. Form augmented matrix [A|b]

3. Transform to RREF (9.3) using elementary row operations.

4. The linear matrix formed by this process has the same solutions as the
initial system, however it is much easier to solve.
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9.5 Existence and Uniqueness

If the RREF has a row that looks like: [0, 0, 0, · · · , 0|k] where k is a non-zero
constant, then the system has no solutions. We call this inconsistent.

If the system has one or more solutions, we call it consistent.
In order to be unique, the system needs to be consistent.

• If every column is a pivot, the there is only one solution (unique solution).

• Else If most columns are pivots, there are multiple solutions (possibly
infinite).

• Else the system is inconsistent.

9.6 Superposition, Nonhomogeneous Principle, and
RREF

For any nonhomogeneous linear system A~x = ~b, we can write the solutions
as: ~x = ~xh + ~xp Where ~xh represents vectors in the set of homogeneous
solutions, and ~xp is a particular solution to the original equation.

We can use RREF to find ~xp, and then, using the same RREF with ~b
replaced by ~0, find ~xh.

The rank of a matrix r equals the number of pivot columns in the RREF.
If r equals the number of variables, there is a unique solution. Otherwise if
there is less, then it is not unique.

9.7 Inverse of a Matrix

When given a system of equations like:

{
x+ y = 1

4x+ 5y = 6
we can rewrite it

in the form:

[
1 1
4 5

] [
x
y

]
=

[
1
6

]
For this sort of matrix, we can find

the inverse which is defined as the matrix that, when multiplied with the
original, equals an Identity Matrix. In other words: A−1A = AA−1 = I

9.7.1 Properties

• (A−1)
−1

= A

• A and B are invertible matrices of the same order if (AB) = A−1B−1

• If A is invertible, then so is AT and (A−1)
T

=
(
AT
)−1

9.7.2 Inverse Matrix by RREF

For an n × n matrix A, the following procedure either produces A−1, or
proves that it’s impossible.

1. Form the n× 2n matrix M = [A|I]

2. Transform M into its RREF, R.

3. If the first n columns produce an Identity Matrix, then the last n are
its inverse. Otherwise A is not invertible.

9.8 Invertibility and Solutions

The matrix vector equation Ax = b where A is an n× n matrix has:

• A unique solution x = A−1b if and only if A is invertible.

• Either no solutions or infinitely many solutions if A is not invertible.

For the homogeneous equation Ax = 0, there is always one solution, x = 0
called the trivial solution.

Let A be an n× n matrix. The following statements apply.

• A is an invertible matrix.

• AT is an invertible matrix.

• A is row equivalent to In.

• A has n pivot columns.

• The equation A~x = ~0 has only the trivial solution, ~x = ~0.

• The equation A~x = ~0 has a unique solution for every ~b in Rn.

9.9 Determinants and Cramer’s Rule

9.9.1 2× 2 Matrix

To find the determinant of a 2× 2 matrix, the determinant is the diagonal
products subtracted. This process is demonstrated below.

A =

[
a11 a12
a21 a22

]
|A| = a22 · a11 − a12 · a21

(16)
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9.9.2 Definitions

Every element of a n× n matrix has an associated minor and cofactor.

• Minor → A (n− 1)× (n− 1) matrix obtained by deleting the ith row
and jth column of A.

• Cofactor → The scalar Cij = (C − 1)i+j |Mij|

9.9.3 Recursive Method of an n× n matrix A

We can now determine a recursive method for any n× n matrix.
Using the definitions declared above, we use the recursive method that

follows.

|A| =
n∑
j=1

aijCij (17)

Find j and then finish with the rules for the 2× 2 matrix defined above
in (9.9.1).

9.9.4 Row Operations and Determinants

Let A be square.

• If two rows of A are exchanged to get B, then |B| = −|A|.

• If one row of A is multiplied by a constant c, and then added to another
row to get B, then |A| = |B|.

• If one row of A is multiplied by a constant c, then |B| = c|A|.

• If |A| = 0, A is called singular.

For an n× n A and B, the determinant |AB| is given by |A||B|.

9.9.5 Properties of Determinants

• If two rows of A are interchanged to equal B, then |B| = −|A|

• If one row of A is multiplied by a constant k, and then added to another
row to produce matrix B, then |B| = |A|

• If one row of A is multiplied by k to produce matrix B, then |B| = k|A|

• If |AB| = 0, then either |A| or |B| must be zero.

• |AT | = A

• If |A| 6= 0, then |A−1| = 1
|A| .

• If A is an upper or lower triangle matrix1, then the determinant is the
product of the diagonals.

• If one row or column consists of only zeros, then |A| = 0.

• If two rows or columns are equal, then |A| = 0.

• A is invertible.

• AT is also invertible.

• A has n pivot columns.

• |A| 6= 0

• If |A| = 0 it is called singular, otherwise it is nonsingular.

9.9.6 Cramer’s Rule

For the n × n matrix A with |A| 6= 0, denote by Ai the matrix obtained
from A by replacing its ith column with the column vector b. Then the ith
component of the solution of the system is given by:

xi =
|Ai|
|A|

(18)

10 Vector Spaces and Subspaces

A vector space V is a non-empty collection of elements that we call vectors, for
which we can define the operation of vector addition and scalar multiplication:

1. Addition: ~x + ~y

2. Scalars: c~x where c is a constant.

that satisfy the following properties:

1A triangle matrix is one where either the lower or upper half is zero, e.g.
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

.
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1. ~x + ~y ∈ V

2. c~x ∈ V

which can be condensed into a single equation: c~x + d~y ∈ V which is
called closure under linear combinations.

10.1 Properties

We have the properties from before, as well as new ones.

1. ~x + ~y ∈ V ← Addition

2. c~x ∈ V ← Scalar Multiplication

3. ~x + ~0 = ~x← Zero Element

4. ~x + (−~x) = (−~x) + ~x = ~0← Additive Inverse

5. (~x + ~y) + ~z = ~x + (~y + ~z)← Associative Property

6. ~x + ~y = ~y + ~x← Commutativity

7. 1 · ~x = ~x← Identity

8. c(~x + ~y) = c~x + c~y← Distributive Property

9. (c+ d)~x = c~x + d~x← Distributive Property

10. c(d~x) = (cd)~x← Associativity

10.2 Vector Function Space

A vector function space is just a unique vector space where the elements of
the space are functions.

Note, the solutions to linear and homogeneous differential equations form
vector spaces.

10.2.1 Closure under Linear Combination

c~x + d~y ∈ V whenever ~x, ~y ∈ V and c, d ∈ R (19)

10.2.2 Prominent Vector Function Spaces

• R2 → The space of all ordered pairs.

• R3 → The space of all ordered triples.

• Rn → The space of all ordered n-tuples.

• P→ The space of all polynomials.

• Pn → The space of all polynomials with degree ≤ n.

• Mmn → The space of all m× n matrices.

• C(I)→ The space of all continuous functions on the interval I (open,
closed, finite, and infinite).

• Cn(I)→ Same as above, except with n continuous derivatives.

• Cn → The space of all ordered n-tuples of complex numbers.

10.3 Vector Subspaces

Theorem: A non-empty subset W of a vector space V is a subspace of V if
it is closed under addition and scalar multiplication:

• If ~u, ~v ∈W, than ~u + ~V ∈W.

• If ~u ∈W and c ∈ R, than c~u ∈W.

We can rewrite this to be more efficient:

If ~u, ~v ∈W and a, b ∈ R, than a~u + b~v ∈W. (20)

Note, vector space does not imply subspace. All subspaces are vector
spaces, but not all vector spaces are subspaces.

To determine if it is a subspace, we check for closure with the above
theorem.

There are only a couple subspaces for R2:

• The zero subspace {(0, 0)}.

• Lines passing through the origin.

• R2 itself.
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We can call the zero and the set V themselves trivial subspaces, calling
the subspace of lines passing through the origin the only non-trivial subspace
in R2.

We can classify R3 similarly:

• Trivial:

– Zero subspace

– R3

Non-Trivial

– Lines that contain the origin.

– Places that contain the origin.

10.3.1 Examples

• The set of all even functions.

• The set of all solutions to y′′′ − y′′t+ y = 0.

• {P ∈ P;P (2) = P (3)}

11 Span, Basis and Dimension

11.1 Span

The span of a set {~v1, ~v2, . . . , ~vn} of vectors in a vector space V, denoted by
Span{~v1, ~v2, . . . , ~vn} is the set of all linear combinations of the vectors.

11.1.1 Example

For example, If ~u =

 3
2
0

 and ~v =

 0
2
2


Then we can write their span as

a~u + b~v = a

 3
2
0

+ b

 0
2
2

 =

 3a
2a+ 2b

2b



11.2 Spanning Sets in Rn

A vector ~b in Rn is in Span{~v1, ~v2, . . . , ~vn} where {~v1, ~v2, . . . , ~vn} are vec-
tors in Rn, provided that there is at least one solution of the matrix-
vector equation A~x = ~b, where A is the matrix whose column vectors
are {~v1, ~v2, . . . , ~vn}.

11.3 Span Theorem

For a set of vectors {~v1, ~v2, . . . , ~vn} in vector space V, Span{~v1, ~v2, . . . , ~vn}
is subspace of V.

11.4 Column Space

For any m× n matrix A, the column space, denoted Col A, is the span of
the column vectors of A, and is a subspace of |mathbbRn.

11.5 Linear Independence

A set {~v1, ~v2, . . . , ~vn} of vectors in vector space V is linearly independent
if no vector of the set can be written as a linear combination of the others.
Otherwise it is linearly dependent.

This notion of linear independence also carries over to function spaces.
A set of vector functions {~v1, ~v2, . . . , ~vn} in a vector space V is linearly
independent on an interval I if for all t in I the only solution of c1~v1 + c2~v2 +
· · ·+ cn~vn = ~0 for (c1, c2, . . . , cn ∈ R) is ci = 0 for all i.

If for any value t0 of t there is any solution with ci 6= ~0, the vector functions
are linearly dependent.

11.5.1 Testing for Linear Independence

1. (a) Put the system in matrix-vector form: ↑ ↑ · · · ↑
~v1 ~v2 · · · ~vn
↓ ↓ · · · ↓



c1
c2
...
cn

 = ~0

(b) Analyze Matrix:
The column vectors of A are linearly independent if and only if the
solution ~x = ~0 is unique, which means ci = 0 for all i.
Any of the following also satisfy this condition for a unique solution:

• A is invertible.
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• A has n pivot columns.

• |A| 6= 0

2. Suppose we have a set of vectors ~v. {~v1, ~v2, . . . , ~vn} ∈ Rn, dim(~v) = m
Then the set ~v is linearly dependent if n > m where n is the number of
elements in ~v. Note, this cannot prove the opposite. It only goes one

way.


 1

2
3

 ,

 4
5
6

 ,

 0
1
0

 ,

 1
−3
7

 Is dependent

3. Columns of A are linearly independent if and only if A~x = ~0 has only
the trivial solutions of n.

11.5.2 Linear Independence of Functions

One way to check a set of functions is to consider them as a one dimensional
vector. ~vi(t) = fn(t) Another method is the Wronskian:

To find the Wronskian of functions f1, f2, . . . , fn on I :

W [f1, f2, . . . , fn] =


f1 f2 · · · rn
f
′
1 f

′
2 · · · r

′
n

...
...

. . .
...

fn−11 fn−12 · · · rn−1n

 (21)

If W 6= 0 for all t on the interval I, where f1, f2, . . . , fn are defined, then the
function space is a linearly independent set of functions on I.

11.6 Basis of a Vector Space

The set {~v1, ~v2, . . . , ~vn} is a basis for vector space V provided that

• {~v1, ~v2, . . . , ~vn} is linearly independent.

• Span{~v1, ~v2, . . . , ~vn} = V

11.6.1 Standard Basis for Rn

{~e1,~e2, . . . ,~en}
where

~e1 =


1
0
0
...
0

 ,~e2 =


0
1
0
...
0

 , . . . ,~en =


0
0
0
...
1


(22)

are the column vectors of the identity matrix In.

11.6.2 Example

A vector space can have different bases.
The standard basis for Rn is: {~e1,~e2} for ~e1 =[
1
0

]
and ~e2

[
0
1

]
giving

{[
1
0

]
,

[
0
1

]}
But another basis for R2 is given by:{[

2
1

]
,

[
1
2

]}

11.7 Dimension of the Column Space of a Matrix

Essentially, the number of vectors in a basis.

11.7.1 Properties

• The pivot columns of a matrix A form a basis for Column A.

• The dimension of the column space, called the rank of A, is the number
of pivot columns in A. rank A = dim(Col(A))

11.7.2 Invertible Matrix Characterizations

Let A be an n× n matrix. The following are true.

• A is invertible.

• The column vector of A is linearly independent.

• Every column of A is a pivot column.

• The column vectors of A form a basis for Col(A).

• Rank A = n

12 Higher Order Linear Differential Equa-

tions

mẍ+ bẋ+ kx = f(t) (23)
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12.1 Harmonic Oscillators

12.1.1 The Mass-Spring System

Consider an object with mass m on a table that is attached to a spring
attached to wall. When the object is moved by an external force, we can
model its behavior using Newton’s Second Law of Motion: F = mẍ where
F is the sum of the forces acting on the object.

We have three different types of forces:

• Restoring Force: The restorative force of a spring is ∝ the amount
of stretching/compression: Frestoring = −kx

• Damping Force: We also assume that friction exists, and therefore
a damping force ∝ the velocity of the object: Fdamping = −bẋ Where
damping constant b > 0 and small for slick surfaces.

• External Force: We also allow for an external force to drive the
motion: Fexternal = f(t)

Thus we get our equation for a Simple Harmonic Oscillator:
mẍ+ bẋ+ kx = f(t)

• Constants m > 0, k > 0, b > 0

• When b = 0, the motion is called undamped. Otherwise it is damped.

• if f(t) = 0, the equation is homogeneous and the motion is called
unforced, undriven, or free. Otherwise it is forced, or driven.

12.1.2 Solutions

When we say solution, we are referring to a solution that gives us x, in other
words, the position of the mass at any given time t as a function of t. Due to
the inherent nature of derivatives, this may or may not have undetermined
constants (often denoted as [c1, c2, . . . , cn]) as will be set by initial values
given (similar to first order differential equations).

Later we will determine how to solve these equations fully, however a quick
answer can be found by applying the following formulas. After learning
the methods given ahead, be sure to come back and determine how these
solutions were determined.

Given Equation: mẍ+ kx = 0

x(t) = c1 cos (ω0t) + c2 sin (ω0t)

ω0 =

√
k

m

This gives us one form of the solution, however we can also find an alternate
form:

x(t) = A cos (ω0t− δ)
Where

• Amplitude A and phase angle δ (radians) are arbitrary constants deter-
mined by initial conditions.

• The motion has circular frequency ω0 =
√

k
m

(radians) per second, and

a natural frequency f0 = ω0

2π

• The period T (seconds) is 2π
√

m
k

• The above solution is a horizontal shift of A cos(ω0t) with phase shift
δ
ω0

.

To convert between the two forms, apply the following formulas.{
A =

√
c21 + c22

tan δ = c2
c1

{
c1 = A cos δ

c2 = A sin δ

To solve the Mass-Spring System with both damping and forcing as given
by the following equation:

mẍ+ bẋ+ kx = F0 cos(ωf t)

we can apply the following formula. (Note, some concepts are explained
later in the text, refer back if needed)

1. xh(t) has three possible solutions. See (12.3).

2. xp(t) can be assumed as A cos(ωf t) +B sin(ωf t) See (12.5).

3. ω0 =
√

k
m

4. A =
m(ω2

0−ω2
f )F0

m2(ω2
0−ω2

f )
2
+(bωf )

2

5. B =
bωfF0

m2(ω2
0−ω2

f )
2
+(bωf )

2

As you can see, this is a pain. Values A and B in particular are tedious
to calculate. Despite this, as you’ll see later, these methods can be easier
than solving by hand.
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12.1.3 Phase Planes

For any autonomous second order differential equation
ẍ = F (x, ẋ)
the phase plane is the two dimensional graph with x and ẋ axes (which

are the position and velocity respectively)2. This phase plane has a vector
field with direction given by{

H → dx
dt

= ẋ

V → dẋ
dt

= ẍ

Trajectories can be formed by parametrically combining the vectors into a
path. A graph showing these trajectories is called a phase portrait.

The differential equation is also equivalent to the system of equations:{
ẋ = y

ẏ = ẍ = f(t)− k
m
x− b

m
y

The biggest advantage with phase portraits is that is allows the user to
solve the differential equation graphically, and not numerically. This can be
much easier if done correctly.

12.2 Properties and Theorems

For the linear homogeneous, second-order differential equation
y′′ + p(t)y′ + q(t)y = 0
with p and q being continuous functions of t, there exists a two-dimensional

vector space of solutions.
Rewriting the above equation gives us
y′′(t) ≡ f(t, y, y′) = −p(t)y′ − q(t)y = 0
which gives us the existence and uniqueness theorem for the second order

equation.

Theorem 2 (Existence and Uniqueness). Let p(t) and q(t) be continuous on
a, b containing t0. For any A and B in R, there exists a unique solution y(t)
defined on (a, b) to the IVP y′′ + p(t)y′ + q(t)y = 0, y(t0) = A, y′(t0) = B

A basis exists for the general second order equation.

Theorem 3 (Solution Space). The solution space S for a second order
homogeneous differential equation has a Dimension of 2.

For any linear second order homogeneous differential equation on (a, b),
y′′ + p(t)y′ + q(t)y = 0

2This concept of a phase plane is identical to the one introduced in (??) with the
exception of ẋ replacing y.

for which p and q are continuous on (a, b), any two linearly independent
solutions {y1, y2} form a basis of the solutions space S, and every solution y
on (a, b) can be written as

y(t) = c1y1(t) + c2y2(t)→ (c1, c2) ∈ R
To generalize we can apply the same principle to nth order differential

equations.

Theorem 4 (Existence and Uniqueness for nth Order Dif-
ferential Equations). Let p1(t), p2(t), . . . , pn(t) be continuous
functions on (a, b) containing t0. For any initial values
A0, A1, . . . , An−1 ∈ R, there exists a unique solution y(t) to the IVP
y′′(tp1(t)y

n−1(t)) + p1(t)y
n−1(t) + p2(t)y

n−2(t) + · · ·+ pn(t)y(t) = 0

y(t0) = A0, y
′(t0) = A1, . . . , y

n−1(t0) = An−1

For nth order differential equations, our solution space theorem (3) applies,
just replace the term “2” and “second” with “n” and “nth”.

12.3 Roots

If given a second order equation in the form aÿ + bẏ + cy = 0, we can use
our previous definition of a first order differential equation to find an easier
method of solving. At its core, this method consists of converting our given
second order differential equation and converting it into a quadratic equation,
using which we can solve for the homogeneous solution.

aÿ + bẏ + cy = 0⇔ ar2 + br + c = 0 (24)

The resulting equation is called the characteristic equation. Solutions to
this equation are called characteristic roots. Due to the nature of quadratic
equations, there are three different possibilities for the solution:

• Two distinct real roots or zeros

• One real root (a double root)

• Two imaginary roots

These are summarized as follows.

These methods allow us to generalize for higher order differential equations
and find solutions that would be otherwise impossible.
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Case One Real Unequal Roots Overdamped Motion

∆ > 0 r1, r2 = −b±
√
b2−4ac
2a

yh(t) = c1e
r1t + c2e

r2t

Case Two Real Repeated Root Critically Damped Motion
∆ = 0 r = − b

2a
yh(t) = c1e

rt + c2te
rt

Case Three Complex Conjugate Roots Underdamped Motion
∆ < 0 r1, r2 = α± βi yh(t) = eαt (c1 cos (βt) + c2 sin (βt))

α = − b
2a
, β =

√
4ac−b2
2a

Table 1: Roots for Second Order Differential Equations in Characteristic
Equation Form

12.4 Linear Independence

The Solution Space Theorem (3) provides us with the number of solutions
in a bases for an nth order homogeneous differential equation (n).

• Starting with m solutions for the nth order case, if m > n the solutions
can no be independent.

• If m = n, we must test using the concepts from before.

• If m < n, the set does not span the space.

12.4.1 Wronskian

The Wronskian also tells us about the linear independence of a set of functions.
This Wronskian is identical to the Wronskian previously defined (21).

Suppose {y1, y2, . . . , yn} is a set of solutions of an nth order homogeneous
differential equation.
L(y) = an(t)yn + an−1(t)y

n−1 + · · ·+ a1(t)y
′ + a0(t)y = 0

1. If W [y1, y2, . . . , yn] 6= 0 at any point on (a, b), then the set is linearly
independent.

2. If W [y1, y2, . . . , yn] = 0 at every point on (a, b), then the set is linearly
dependent.

12.5 Undetermined Coefficients

Let’s assume L(y) = an(t)yn + an−1(t)y
n−1 + · · ·+ a1(t)y

′+ a0(t)y = 0 where
t ∈ some interval I.

If yi(t) is a solution of L(y) = fi(t), then y(t) = c1y1(t) = c2y2(t) + · · ·+
cnyn(t) is a solution of L(y) = c1f1(t) + c2f2(t) + · · ·+ cnfn(t)

In order to apply this, we need the non-homogeneous principle.

Theorem 5 (Non-Homogeneous Principle). y(t) = yh(t) + yp(t)

What this basically boils down to is making educated guesses in order
to identify the form of the particular solution, as well as eventually the
particular solution itself. Once the particular and homogeneous solutions
are identified, add them to determine the solution. The following table may
help identify common formats and solution types.

f(t) yp(t)

1 k A0

2 Pn(t) A0(t)

3 Cekt A0e
kt

4 C cos(ωt) +D sin(ωt) A0 cos(ωt) +B0 sin(ωt)

5 Pn(t)ekt An(t)ekt

6 Pn(t) cos(ωt) +Qn(t) sin(ωt) An(t) cos(ωt) +Bn(t) sin(ωt)

7 Cekt cos(ωt) +Dekt sin(ωt) A0e
kt cos(ωt) +B0e

kt sin(ωt)

8 Pn(t)ekt cos(ωt) +Qn(t)ekt sin(ωt) An(t)ekt cos(ωt) +Bn(t)ekt sin(ωt)

Table 2: Guesses for Particular Solutions

• Pn(t), Qn(t), An(t), Bn(t) ∈ P

• A0, B0 ∈ P0 ≡ R

• k, ω, C,D ∈ R

• In 4 and 6 − 8 both terms must be in yp even if only one term is
present in f(t).

If any term or terms of yp is found in yh, multiply the term by t or t2 to
eliminate the duplication.

12.6 Variation of Parameters

We’ve already used variation of parameters to find the solutions of y′+p(t)y =
f(t). This same strategy can be applied to second order equations in the
form:
y′′ + p(t)y′ + q(t)y = f(t)
To apply this method, follow these steps.

13

1. Find two linearly independent solutions of the second order differential
equation y′′ + p(t)y′ + q(t)y = f(t) this having the general solution
yh(t) = c1y1(t) + c2y2(t)

2. To find the particular solution, take yh(t) = c1y1(t) + c2y2(t) and swap
constants to get yp(t) = v1(t)y1(t) + v2(t)y2(t) where v1 and v2 are
unknown functions.

3. We find v1 and v2 by substituting our new equation into our first.
Differentiating by the product rule we get y′p(t) = v1y

′
1+v2y

′
2+v′1y1+v′2y2

4. Before we calculate y′p
′ we choose an auxiliary condition, that v1 and v2

satisfy v′1y1 + v′2y2 = 0 where we get y′p = v1y
′
1 + y′2v2

5. Differentiating again we get y′p
′(t) = v1y

′
1
′ + v2y

′
2
′ + v′1y

′
1 + v′2y

′
2

6. We wish to get L(y) = y′′ + py′ + qy = f Substituting for what we have
solved for gives v1y′1 + v′2y

′
2 = 0

7. We now have two equations for our two unknowns.

{
y1v
′
1 + y2v

′
2 = 0

y′1v
′
1 + y′2v

′
2 = f

8. Solve the system of equations and insert.

Another method is to use Cramer’s Rule (18) where

v′1 =

0 y2
f y′2


y1 y2
y′1 y′2

 and v′2 =

y1 0
y′1 f


y1 y2
y′1 y′2


The denominator in this case is the Wronskian. It will not be zero because

both y1 and y2 are linearly independent. Integrate these to find v1 and v2.

13 Linear Transformations

Vectors that aren’t rotated by linear transformations, but are only scaled or
flipped are called eigenvectors.

Theorem 6 (Eigenvalues and Eigenvectors). Let T : V → V be a linear
transformation. A scalar λ is an eigenvalue of T is there is a nonzero vector
~v ∈ V such that T (~v) = λ~v.

Such a nonzero vector ~v is called an eigenvector of T corresponding to λ.
If the linear transformation T is regenerated by an n× n matrix A where

V = Rn and T (~v) = A~v, then A and ~v are characterized by the equation
A~v = λ~v.

To compute these eigenvalues and eigenvectors, follow the following steps3.

1. Write the characteristic equation |A− λI| = 0

2. Solve the characteristic equation for the eigenvalues.

3. For each eigenvalue, find the eigenvector by solving (A− λiI) ~vi = 0

As you’d imagine, once the size of a matrix becomes larger than 2 or 3,
these steps are tedious and long. Computers to the rescue!

13.1 Special Cases

Some special cases to watch out for:

• Triangular Matrices: The eigenvalues of a triangular matrix (upper
or lower) appear on the main diagonal.

• 2 × 2 Matrices: The eigenvalues can be determined with λ2 −
(Tr4(A))λ+ |A| = 0

• 3 × 3 Matrices: Similarly: λ3 − λ2Tr(A) − λ1
2

(
Tr(A2)− Tr2(A)

)
−

det(A) = 0

13.2 Eigenspaces

The set of all eigenvectors belonging to an eigenvalues λ together with the
zero vector form a subspace of Rn called the eigenspace.

Theorem 7 (Eigenspaces). For each eigenvalue λ of a linear transformation

T : V→ V, the eigenspace Eλ = {~V ∈ V |T (~v) = λ~v} is a subspace of V.

Theorem 8 (Distinct Eigenvalue). Let A be an n×n matrix. If λ1, λ2, . . . , λp
are distinct eigenvalues with corresponding eigenvectors ~v1, ~v2, . . . , ~vn, then
{~v1, ~v2, . . . , ~vn} is a set of linearly independent vectors. In other words, if
each eigenvalue has one associated eigenvector, than that set of eigenvectors
is linearly independent.

3Note, the same exact steps are followed even if we have λ to be in terms of i. The
only exception is that we are no longer in any Rn space, and therefore there will be no
real eigenspace (See (13.2))

4Where Tr(A) is the Trace of a matrix, i.e. the sum of the main diagonal.
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13.3 Properties of Eigenvalues

Let A be an n× n matrix.

• λ is an eigenvalue of A if and only if |A− λI| = 0

• λ is an eigenvalue of A if and only if (A− λI)~v = ~0 has a non-trivial
solution.

• A has a zero eigenvalue if and only if |A| = 0

• A and AT have the same characteristic polynomials and eigenvalues.

13.4 The Mind-Blowing Part

Remember Characteristic Roots (12.3)? Well, they are identical to eigenval-
ues as is evidenced below.

Given the linear second order differential equation:
y′′ − y′ − 2y = 0
we know that it has a characteristic equation of
r2 − r − 2 = (r − 2)(r + 1) = 0
with roots of

[r1, r2]

{
2

−1

which creates the general solution of
y = c1e

2t + c2e
−t

In Section 12.1.3 we saw that we can write a second order differential
equation as a system of equations:{

ẋ = y′

ẏ = 2y + y′

which has the matrix form ~x′ = A~x:

~x =

[
y
y′

]
and A =

[
0 1
2 1

]
The characteristic equation |A−λI| = 0 for this matrix A is λ2−λ−2 = 0

which has the same eigenvalues as our original equation has characteristic
roots.

13.4.1 Properties of Linear Homogeneous Differential Equations
with Distinct Eigenvalues

For the differential equation ~x′ = A~x with distinct eigenvalues, the following
properties apply.

• The domain of the linear transformation is a vector space of vector
functions.

• The solution set is also a vector space of vector functions.

• The eigenspace for each eigenvalue is a one dimensional line in the
direction of a vector in Rn.

14 Linear Systems of Differential Equations

To define the linear first order differential equations system:
An n-dimensional first order differential equations system on an open

interval I is one that can be written as a matrix vector equation.

~x′(t) = A(t)~x(t) +~f(t) (25)

• A(t) is an n× n matrix of continuous functions on I.

• f(t) is an n× 1 vector of continuous functions on I.

• ~x(t) is an n× 1 solution vector.

• If f(t) ≡ 0, the system is homogeneous.

14.1 Graphical Methods

We use the phase plane from before to accurately represent these systems.

14.1.1 Nullclines

The v nullcline is the set of all points with vertical slope which occur on the
curve obtained by solving x′ = f(x, y) = 0 The h nullcline is the same except
with horizontal slope and is found with y′ = f(x, y) = 0 At the intersection
we get a fixed equilibrium point.

14.1.2 Eigenvalues

Eigenvalues play a large role in phase planes as well. For an autonomous
and homogeneous system of differential linear system of equations:

• Trajectories are toward or away based on the sign of the eigenvalue.

• Along each eigenvector is the separatria that seperates different curves.
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• Equilibrium arrives at origin (Symmetric)

• Speed is determined by magnitude of the eigenvalues.

14.2 Linear Systems with Real Eigenvalues

To solve a system in the form
~x = A~x

1. Find eigenvalues of A.

2. Find associated eigenvectors.

3. Solution is in the form (for a 2× 2 matrix at least) our solution is in
the form: ~x(t) = c1e

λ1t~v1 + c2e
λ2t~v2

If there are insufficient eigenvalues (repeated eigenvalues), follow the
method below.

1. Find the one eigenvalue.

2. Find its eigenvector.

3. Find ~v such that (A− λI)~u = ~v.

4. Solution: ~x(t) = c1e
λt~v + c2e

λt(t~v + ~u).

14.3 Non-Real Eigenvalues

If we have a matrix A with non-real eigenvalues λ1, λ2 = α ± iβ, the
corresponding eigenvectors are also complex conjugate pairs in the form:
~v1, ~v2 = ~p± i~q
To solve:

1. For the first eigenvalue, find its eigenvector. The second eigenvector is
a pair of the first.

2. Construct the real and non-real parts:{
~xr = eαt(cos(βt)~p− sin(βt)~q)

~xi = eαt(sin(βt)~p + cos(βt)~q)

3. The general solution is defined as ~x(t) = c1~xr(t) + c2~xi(t)

14.3.1 Interpreting Non-Real Eigenvalues[
~xr
~xi

]
= eαt

[
cos(βt)− sin(βt)
sin(βt) + cos(βt)

] [
~p
~q

]
• The first variable defines the expansion.

– If α > 0→ Growth without bound.

– If α < 0→ Decay to 0.

– If α = 0→ Period solutions.

• The second defines rotation.

– Counterclockwise for β > 0

– Clockwise for β < 0

• The third defines tilt and shape.

14.4 Stability and Linear Classification

A constant solution ~x ≡ ~c is called an equilibrium solution. An equilibrium
solution in the phase plane is a fixed point.

• If solutions remain close and tend to ~c as t→∞ we call this asymptot-
ically stable.

• If solutions are neither attracted nor repelled, we call this neutrally
stable.

• If other, it is unstable.

14.5 Parameter Plane

14.6 Possibilities in the Parameter Plane

We have to consider a couple different possibilities.

1. Real Distinct Eigenvalues (∆ > 0)

When ∆ = (Tr(A))2 − 4|A| > 0 we have real eigenvalues λ1 6= λ2 with
corresponding linearly independent eigenvectors ~v1 and ~v2 with general
solution

~x = c1e
λ1t~v1 + c2e

λ2t~v2
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The signs of the eigenvalues direct the trajectory behavior in the phase
portrait.

We can label the eigendirections fast or slow based on the magnitude of
the eigenvalues. Whichever it is, the trajectories are parallel to fast and
perpendicular to slow.

Three possibilities

• Attracting Node (λ1 < λ2 < 0)

• Repelling Node (0 < λ1 < λ2)

• Saddle Point (λ1 < 0 < λ2)

2. Complex Conjugate Eigenvalues (∆ < 0)

When ∆ = (Tr(A))2 − 4|A| < 0 we get non-real eigenvalues.

λ1,2 = α± βi

where α = Tr(A)
2

and β =
√
−∆. α and β are real. The real solutions

are given by:{
~xr = eαt(cos(βt)~p− sin(βt)~q)

~xi = eαt(sin(βt)~p + cos(βt)~q)

For complex eigenvalues stability behavior depends on the sign of α.

• Attracting Spiral (α < 0)

• Repelling Spiral (α > 0)

• Center (α = 0)

3. Borderline Case: Zero Eigenvalues (|A| = 0) If one eigenvalue
is zero we get a row of non-isolated fixed points in the eigendirection
associated with the eigenvalues, and the phase plane trajectories are all
straight lines in direction of other eigenvector.

If two eigenvalues are zero, there is only one eigenvector, along which
we have a row of non-isolated fixed points. Trajectories from any other
point in the phase plane must be parallel to the one eigenvector in the
direction specified by the system.

4. Borderline Case: Real Repeated Eigenvalues (∆ = 0)

In this situation we have two cases to contend with.

(a) Degenerate Node: If λ has one linearly independent eigenvector we
call it degenerate. The sign of λ gives its stability.

(b) Star Node: If λ has two linearly independent eigenvectors we call
it an attracting or repelling star node. The sign of λ gives its
stability.

In both cases, the sign of λ gives its stability.

• If λ > 0, trajectories go to infinity, parallel to ~v.

• If λ < 0, trajectories approach the origin parallel to ~v.

• If λ = 0, there exists a line of fixed points at the eigenvector.

15 Non-Linear Systems

15.1 Properties of Phase Plane Trajectories in Non-
Linear 2× 2 Systems

1. When uniqueness holds, phase plane trajectories cannot cross.

2. When the given functions f and g are continuous, trajectories are
continuous and smooth.

15.2 Equilibria

Phase Portraits can have more than one, or none at all. To find a system’s
equilibria, solve x′ and y′ simultaneously.

15.3 Nullclines

Nullclines in this case are the same as before.

15.4 Limit Cycle

A limit cycle is a closed curve (representing a periodic solution) to which
other solutions tend by winding around more and more closely from either
inside or outside.

16 Linearization

Theorem 9 (Jacobian). For a given system of equations:{
x′ = f(x, y)

y′ = g(x, y)

17

Type Eigenvalues Linearized System Nonlinear System
Geometry Stability Geometry Stability

Real Distinct
Roots

λ1 < λ2 < 0 Attracting Node Asymptotically Stable Attracting Node Asymptotically Stable
0 < λ2 < λ1 Repelling Node Unstable Repelling Node Unstable
λ1 < 0 < λ2 Saddle Unstable Saddle Unstable

Real Repeated
Roots

λ1 = λ2 < 0 Attracting Star of Degenerate
Node

Asymptotically Stable Attracting Node or Spiral Asymptotically Stable

λ1 = λ2 > 0 Repelling Star or Degenerate
Node

Unstable Repelling Node or Spiral Unstable

Complex
Conjugate
Roots

α > 0 Repelling Spiral Unstable Repelling Spiral Unstable
α < 0 Attracting Spiral Asymptotically Stable Attracting Spiral Asymptotically Stable
α = 0 Center Stable Center or Spiral Uncertain

Table 3: Table of Behavior Based on the System’s Jacobian Matrix Eigen-
values

where f and g are twice differentiable, the linearized system at an equilib-
rium point (xe, ye) translated by u = x− xe and v = y − ye is

[
u
v

]′
= J(xe, ye) where J(xe, ye) =

[
fx(xe, ye) fy(xe, ye)
gx(xe, ye) gy(xe, ye)

]
(26)
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