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1 Overview
Right off the bat we need to discuss the difference between discrete
and continuous. A Discrete unit is indivisible, and we count discrete
things. This gives us number such as the set of Natural numbers,
N = {0, 1, 2, 3, 4, · · · }.
On the flipside, we measure with continuous units. This gives us

fractions and non-negative real numbers.
We also have discrete structures which include sets, sequences,

networks, matrices, permutations, and real-world data.
These structures are what the class will focus on.

Theorem 1 (Naive Set Theory). A set is an unordered collection of
objects.

Let S be a set. If there are exactly n distinct objects in S (where n
is a non-negative integer), then we say the cardinality of S is n, i.e.
|S| = n.1
If x is an element of S, we say x ∈ S.
Let A and B be sets, the Cartesian product of A and B, A × B,

is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B, i.e.
A×B = {(a, b)|a ∈ A, b ∈ B}.

2 Principles of Counting
Theorem 2 (Multiplicative Principle of Counting2). If task 1 can be
done in n1 ways, and task 2 can be done in n2 ways, then the total
number of ways to do one task and then the other is n1 · n2.

Theorem 3 (Additive Principle of Counting). If task 1 can be done
in n1 ways, and task 2 can be done in n2 ways, then the total number
of ways to do one task or then the other is n1 + n2.

2.1 Pigeon-Hole Principle

Theorem 4 (The Pigeon-Hole Principle). If n pigeons fly into k pigeon
holes, and k < n, then some pigeon hole must contain at least 2 pigeons.

1Cardinality is the number of elements in S. Ordinality is for ordering infinities.
2Product Rule

If f is a function from a finite set x to a finite set y, and if |x| > |y|,
then f(x1) = f(x2) for some x1, x2 ∈ x such that x1 6= x2

Theorem 5 (The Extended Pigeon-Hole Principle). If N pigeons are
assigned to K < N pigeon holes, then one of the pigeon holes must
contain at least

⌊
N−1
K

⌋
+ 1 or

⌈
N
K

⌉
pigeons.

2.2 Permutations and Combinations

Theorem 6 (Permutations). A permutation is any linear arrangement
of distinct objects in which order matters.

Any ordered arrangement of r objects is called an r-permutation.
The number of ordered arrangements (permutations) of r objects

from n objects (0 ≤ r ≤ n) is

P (n, r) =
n!

(n− r)!
= P n

r

In general, if there are n objects, with n1 of type 1, n2 of type 2, . . . ,
to type r, then there are n!

n1!n2!···nr!
total permutations of the n objects.

Theorem 7. A combinations is a sequence of objects where order
does not matter. The size of a combination is the number of different
elements that compose it.

The number of combinations of size r using n different objects is
expressed as

C(n, r) =

(
n
r

)
= Cn

r =
n!

r!(n− r)!
=
P (n, r)

r!

Example 2.1. How many different committees can be formed
consisting of one chair, one vice-chair, and one treasurer from a pool
of 100 people?
↪→ The answer is not C(100, 5), but rather 100!

97!

Example 2.2. Same question as before, but suppose we have one
chair, one vice-chair, and two treasurers.

↪→ 100 · 99 ·
(

98
2

)
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Example 2.3. How many ways are there to arrange the letters in
“TALLAHASSEE” without having adjacent “A” ’s?
↪→ First off, disregard all of the “A” ’s, we’ll insert those later.

TLLHSSEE→ 8!

2!2!2!

Next, determine the possible slots for the “A” ’s to go, which are in
between each of the letters, as well as at the beginning and end. This
leads to a total of (

8!

2!2!2!

)
·
(

9
3

)

2.3 Binomial Coefficients

Theorem 8 (The Binomial Theorem). Let x and y be variables, and
let n be a non-negative integer, then

(x+ y)n =
∞∑
j=0

(
n
j

)
xn−jyj

2.4 Powersets

The powerset of a set is the set of all its possible subsets.

Example 2.4. How many subsets does the set {1, 2, 3, 4, · · · , n} have?
↪→ Let’s count sets of size

• 0⇒
(
n
0

)
• 1⇒

(
n
1

)
• n⇒

(
n
n

)
So we have a total of(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
= (1 + 1)n = 2n(Binomial Theorem)

2.5 Counting Integer Solutions

The number of different, non-negative integer solutions (y1, y2, · · · , yk)
of the equation:

y1 + y2 + · · ·+ yk = m

is (
m+ k − 1
k − 1

)
Think of this as counting the number of ways to distribute m objects

to k baskets.

2.6 Linear Recursion

Theorem 9. A linear recursion with constant coefficients is a
recurrence relation of the form

an = c1a+ n− 1 + c2an−2 + · · ·+ ckan−k + F (n)

where n ≥ k, F (n) is a function of n only, ci ∈ R, i = 1, 2, · · · , k, and
ck 6= 0.
If F (n) = 0 we call this a homogeneous linear recursion of degree k

with constant coefficients.

Theorem 10. Assume a sequence {an} satisfies some degree k linear
recursion.3

an = c1an−1 + c2an−2, n ≥ 2

Let r1 and 2 be the roots of the characteristic equation

r2 = c1r + c2

1 If r1 = r2, then ∃{α1, α2 ∈ R|an = (α1 + α2n)rn1}
2 If r1 6= r2 then ∃{α1, α2 ∈ R|an = α1r

n
1 + α2r

n
2}

Example 2.5. Solve an + an−1 − 6an−2 = 0, n ≥ 2
↪→ Assume an = crn. This comes from looking at the simplest possible

3This uses a degree 2 equation
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case: an = ran−1, n ≥ 1, a0 = c→ an = crn

↪→ crn + crn−1 − 6crn−2 = 0→ 1 + r−1 − 6r−2 = 0

↪→ r2 + r − 6 = 0→ r1,2 = 2,−3

So an = c12
n and bn = c2(−3)n are solutions. In fact, since they are

linearly independent solutions, the general solution is4

an = c12
n + c2(−3)n

We can also determine these coefficients with a0 = 1, a1 = 2 giving our
final answer of

an = 2n, n ≥ 0�

2.6.1 Non-Homogeneous Linear Recursion

Theorem 11. Recall a non homogeneous linear recursion with constant
coefficients has the form

an = c1a+ n− 1 + c2an−2 + · · ·+ ckan−k + F (n)

with the associated homogeneous form

an = c1a+ n− 1 + c2an−2 + · · ·+ ckan−k

Any solution to the non-homogeneous linear recursion has the form
an + bn where an is a particular solution of the non-homogeneous form,
and bn is any solution of the homogeneous form, i.e. the same equation
from differential equations with

Solution = homogeneous+ non− homogeneous

Suppose {an} satisfies the non-homogeneous linear recursion where
F (n) has the form:

F (n) = (polynomial) · (exponential) = P (n) · Sn

4since the recursion is linear

1. When S is NOT a root of the characteristic equation of the second
form. Then the form is

an = q(n) · Sn

Where q(n) is again a polynomial with degree q ≤ deg(P ) is n.
2. When S IS a root of the characteristic equation, then the form is

an = nm · q(n) · Sn

Where m is the multiplicity of S as a root of the characteristic
equation and q(n) is the same.

Example 2.6. Find the general solution of

an = 3an−1 + 2n, n ≥ 1, a0 = 1

↪→ Note that the homogeneous linear recursion form gives us the roots

an = 3an−1 → r = 3− an = α3n, α ∈ R

To find the particular solution, we note that F (n) = 2n, which gives
us that the particular solution has the form

bn = c2n

Now

2.7 Divide and Conquer Algorithms

The divide and conquer strategy in general is to solve a given problem
of size n by breaking the general problem into a ≥ 1 sub-problems of
size n

b
for b ≥ 1.

We assume f(n) satisfies f(n) = a · f
(
n
b

)
+ y(n).

Let f be an increasing function that satisfies f(n) = a · f
(
n
b

)
+ c

where a, b, c ∈ Z+ and b ≥ 2. If n|b ⇒ 1 f(a) will be O(nlogb(a)) if
a > 1 2 our time has growth on the order of O(log(n)).
Furthermore, when a > 1, and n = bk, k = 1, 2, · · · then the time

complexity f(n) = c1 ·nlogb(a)+c2 where c1 = f(1)+ c
a−1 and c2 = − c

a−1 .
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2.7.1 Master Theorem Corollary

Let f be an increasing function that satisfies f(n) = af(n
b
) + cnd where

a, c ∈ Z+, b > 1 ∧ c, d ∈ R, c > 0, d ≥ 0. If n = bk, k ∈ Z+ then
1. f(n) is O(nd)⇔ a < bd

2. f(n) is O(nd · log(n))⇔ a = bd

3. f(n) is O(nlogb(a))⇔ a > bd

2.8 Generating Functions

Theorem 12. The generating function for the sequence {an}n≥0 is the
series

A(z) =
∞∑
n=0

anz
n

Think of the zs as placeholders. We don’t actually care about their
value.

Notation:
[zn]A(z)

Is the coefficient of the znth term in the series A(z).

Example 2.7. If an = 1 for all n ≥ 0, then the generating function is
A(z) = 1 + z + z2 + z3 + · · ·+ zn = 1

1−z =
∑∞

n=0 z
n

Example 2.8. Show that the generating function for a = n, n ≥ 0 is
A(z) = z

(1−z)2

↪→ Note d
dz

(
1

1−z

)
= 1

(1−z)2

But d
dz

=
(

1
1−z

)
= d

dz
(
∑∞

n=0 z
n) =

∑∞
n=0 n− zn−1

So

z · 1

(1− z)2
= z ·

∞∑
n=0

nz−1 =
∞∑
n=0

nzn =
∞∑
n=0

anz
n → an = n

Therefore the generating function is A(z) = z
(1−z)2 .

Theorem 13. If A(z) is the generating function for the sequence
associated to {an}n≥0 and if B(z) is the generating function associated
to {bn}n≥0, then

1. αA(z) + βB(z) is the generating function associated to {αan +
βbn}n≥0 where α, β ∈ R.

2. A(z) ·B(z) is the generating function associated to

{cn}n≥0 =
a∑

k=0

akbn−k

Example 2.9. In how many ways can change be given for 30 cents
using pennies, nickels, dimes, and quarters?
↪→ Let’s look at the generating functions for each currency: Pennies:

(1 + z + z2 + z3 + · · · ) Nickels: (1 + z5 + z10 + z15 + · · · ) Dimes:
(1 + z10 + z20 + z30 + · · · ) Quarters: (1 + z25 + z50 + z75 + · · · )

The product of these polynomials is the total number of ways to
make change.

A(z)B(z)C(z)D(z) = 1 + z + z2 + z3 + z4 + 2z5 + · · ·+ 18z30

Therefore, there are 18 ways to make change for 30 cents.

2.9 The Inclusion/Exclusion Principle

This applies to cardinality, area, mass, volume, etc.. . .
How many elements are there in A ∪ B where A and B are finite

sets?
|A ∪B| = |A|+ |B| − |A ∩B|

Now consider three finite sets:

|A ∪B ∪ C| = |A|+|B|+|C|−|A ∩B|−|A ∩ C|−|B ∩ C|+|A ∩B ∩ C|

Notation for three finite sets:

|A1 ∪ A2 ∪ A3| =
∑

1≤j≤3

|Ai| −
∑

1≤i<j≤3

|Ai ∩ Aj|+ |A1 ∩ A2 ∩ A3|

Theorem 14 (Inclusion/Exclusion). Let A1, A2, · · · , An be finite sets,
then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩ Aj|+ · · ·+ (−1)n+1

∣∣∣∣∣
n⋂

i=1

ai

∣∣∣∣∣
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or ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

I⊂{1,2,3,4,...,n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
or ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

I∈p({1,2,3,4,...,n})

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
2.9.1 Derangements

A derangement of (1, 2, 3, · · · , n) is any permutation of these numbers
that leaves no number in its original position.
For a given set, (1, 2, 3, · · · , n), there are approximately n!

e

derangements, or more accurately

n! ·

(
n∑

i=0

(−1)i

i!

)

3 Logic and Proofs

3.1 Propositional Logic

Before we begin we have to define the syntax of these expressions. Let
the letters p, q, r, s, · · · denote the various propositions, while T and F
denote the truth value of the statement.
First we define the negation of p, denoted ¬p. This is expressed as

the statement, “It is not the case that p.”
Next we define the conjunction of p and q, denoted p ∧ q. This

statement is true when both p and q are true, but false otherwise.
The disjunction of p and q is true when either p or q is true, and

false otherwise.
The exclusive or of p and q is true when exactly one is true, and

false otherwise.
The conditional statement is defined by the expression “If p; then q.”
The biconditional statement is similar, except it is defined by the

expression “p if and only if q.”

p q p ∧ q p ∨ q q ⊕ q p→ q p ⇐⇒ q
T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T

Table 1: Truth Table for Various Statements

3.2 Propositional Equivalences

A statement that is always true is called a tautology, while a statement
that is always false is called a contradiction, and a statement that is
neither is a contingency.

Two statements are logically equivalent if p ⇐⇒ q is a tautology.

3.3 Methods of Proof

3.3.1 Direct Proof

This style of proof directly proves the statement through application
of properties, definitions, or theorems. It is the most common type of
proof.

3.3.2 Proof by Contraposition

p⇒ q ≡ q ∨ (¬p) ≡ ¬p ∨ ¬(¬q). Therefore ¬q ⇒ ¬p.

3.3.3 Proof by Contradiction

Suppose we wish to prove statement p, then assume ¬p, and then prove
¬p implies a contradiction.

3.3.4 Existence Proofs

To prove existence we can either choose a constructive approach, or a
non-constructive approach. A constructive proof constructs an example
satisfying the conditions, and if it’s not constructive, then it has to be
non-constructive.
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3.3.5 Uniqueness Proofs

First prove (∃x)[P (x)⇒ T ]

Then prove that if P (y) ⇒ T for any y, then show y = x. Else if
y 6= x, show P (y) is false.

3.4 Induction

Theorem 15 (The Well-Ordering Principle). Every non-empty subset
of Z+ contains a smallest element. Z+ itself is well-ordered. Note, Z+

contains no open sets or intervals.

Theorem 16 (The Principle of Mathematical Induction). Let P (n) be
a propositional function.

Suppose P (1)⇒ T and ∀k ∈ Z+ if wherever P (k)⇒ P (k + 1), then
P (n)⇒ T for all n ∈ Z+.
Note, induction requires two steps, the first of which being to prove

P (1), and the second to prove P (k)⇒ P (k + 1).

4 Set Theory

Theorem 17. Definitions:
1. A set is a list of elements where repetition and order doesn’t

matter.

2. If p(x) is a propositional function with domain of speech u (the
universe) then A = {x ∈ u|p(x)}, so x ∈ A⇔ p(x) is true. By
definition, the negation of x ∈ A is x 6∈ A.

3. Two sets are equal if they have exactly the same elements.

4. By definition, the only set with no elements is the Empty Set, or
null set, denoted {} or ∅. Note, {0} is not the empty set.

5. A is a subset of B if ∀x[x ∈ A ⇒ x ∈ B] is true. We write
A ⊆ B, and A ⊆ A. Note, A = B if and only if A ⊆ B and
B ⊆ A.

6. A is a proper subset of B if A is a subset of B, and A 6= B. So
∃x[x ∈ B ∧ x 6∈ A]. A ⊂ B.

4.1 Operations Between Sets

1. Union: For A,B ⊆ u we define A∪B = {x ∈ u|(x ∈ A)∨(x ∈
B)}. ⋃

i∈I

Ai = {x ∈ u|(∃i ∈ I)[x ∈ Ai]}

2. Intersection: For A,B ⊆ u,A∩B = {x ∈ u|(x ∈ A)∧(x ∈ B)}.⋂
i∈I

Ai = {x ∈ u|(∀i ∈ I)[x ⊂ Ai]}

3. Set Complementation: “The complement of A” is Ac = {x ∈
u|x 6∈ A}. uc = ∅. ∅c = u.

We can apply DeMorgan’s Laws.
1. (⋃

i∈I

Ai

)c

=
⋂
i∈I

Ac
i

2. (⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i

4.2 Set Properties and Functions

Theorem 18. Definitions:
1. For sets A, B, we define the cartesian product of A × B =
{(a, b)|(a ∈ A) ∧ (b ∈ B)}

2. The difference between A and B is A−B = {x ∈ u|(x ∈ A)∧(x 6∈
B)}.

3. A function from A to B is a rule that associates a unique element
in B to each element of A, i.e. f : A→ B is a function from A
to B if (∀a, b ∈ A)[a = b⇒ f(a) = f(b)].

4. If f : A→ B is a function, then A is called the domain of f , B is
called the codomain, and the range of f is f(a) = {y ∈ B|(∃a ∈
A)[y = f(a)]}. Note, by definition, the range is contained in the
codomain f(a) ⊆ B.
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5. f : A→ B is injective, (1− 1), or one-to-one, if for any y ∈ B
there is at most one a in A such that f(a) = y.

6. f : A→ B is surjective, or onto if for any y ∈ B, ∃a ∈ A such
that f(a) = y.

7. If f is both one-to-one and surjective, then it is called bijective.
8. A set A is said to be countable if there exists a bijection f : N→

A.
9. If f : A→ B is a bijection, then it is invertible.

10. A set that is not finite nor countable is said to be uncountable.

5 Algorithms and Integers

5.1 Complexity

Theorem 19. Definitions:
1. Let f be a function f : [0,∞) → R and g : [−,∞) → R, we

write f = O(g) and say “f is of order g at most”. If there exists
constants c > 0 and k ≥ 0 such that

|f(x)| ≤ c |g(x)| for all x > k

2. We write f = Θ(g), “f and g are of the same order” if f = O(g)
and if g = O(f). This is equivalent to saying ∃c1, c2, k(0 < c1 <
c2 ∧ k ≥ 0) such that c1 |f(x)| ≤ |g(x)| ≤ c2 |f(x)| , x > k.

Theorem 20. If f1(x) = O(g1(x)) and f2(x) = O(g2(x)), then
1. (f1 + f2)(x) = O(max(|g1(x)| , |g2(x)|))
2. (f1f2)(x) = O(g1(x)− g2(x))

Theorem 21. Definitions:
1. Time Complexity of an algorithm relates to the time required to

give output.
2. Space Complexity relates to the computer memory required by the

algorithm.
3. Worst-Case Complexity is the maximum number the algorithm

for input of size n.

Big O Form Complexity
O(1) constant
O(log(n)) logarithmic
O(n) linear
O(nlog(n)) nlog(n)
O(n2) quadratic
O(n3) cubic
O(nm) polynomial
O(2n) exponential
O(n!) factorial

Table 2: Big O Forms

4. Average Case Complexity is the average number of operations
used to solve a problem over all inputs of a given size.

Theorem 22. Let P : R→ R and q : R→ R be polynomials, then
1. p = O(q)⇔ degree(p) ≤ degree(q)

2. p = Θ(q)⇔ degree(p) = degree(q)

5.2 Greedy Algorithms

A greedy algorithm is an algorithm that makes the “best” choice at
each step.

5.2.1 Change Problem

Consider the problem of making change for n checnts using quarters,
dimes, nickels, and pennies using the fewest total number of coins.

The strategy for this problem is defined as the following. At each step,
choose the coin of largest denomination possible without exceeding the
total.

1 def change(c1, c2, ..., c3, n):
2 c = [0, 0, 0, ..., 0] # Number of coins we have
3 for i in range(0, c):
4 while n >= c_i:
5 c[i] = c[i] + 1
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6 n = n - c_i
7 return c

Lemma: If n ∈ Z, n ≥ 0, then n cents in change (q, d, n, p), using the
fewest coins possible, has at most 2d, 1n, 4p and cannot have 2d+ n.
The amount of change in dnp cannot exceed 24.

5.3 Mergesort

The algorithm is as follows:
Step One is to split the given list into two equal sublists until each

list contains a single element.
Step Two is to merge the sublists until they are sorted.
Lemma: Let L1, L2 be the two sorted lists of ascending numbers,

where Li contains ni elements. L1 and L2 can be merged into a single
list, L, using at most n1 + n2 − 1 comparisons.

The worst-case complexity of mergesort is O(n · ln(n))

5.4 Division Algorithm

For any integers a, b ∈ Z|a 6= 0, a divides b, a|b if ∃c ∈ Z such that
b = ac.
Let a, b be positive integers, then there are unique integers q, r,

0 ≤< b such that a = bq + r.
If we consider a fixed b > 1 then
∃k ≥ 0 and ∃ ((a0, a1, · · · , ak) ∈ {0, 1, · · · , b− 1})[
(ak 6= 0) ∧

(
n = akb

k + ak−1b
k−1 + · · ·+ a0 =

∑k
i=0 aib

i
)]

5.4.1 Uniqueness

The representation of any number n ∈ Z+ ∪ {0} is unique for each
fixed base b ≥ 1

5.5 Base b Expansion

The following algorithm finds the base b representation of any integer
n ≥ 0.

1 def base_b_expansion(n,b):
2 q = n
3 k = 0
4 while q != 0:
5 a_k = q % b
6 q = q / b
7 k += 1

The complexity of the above algorithm is Θ(logb(n))

5.6 Prime Numbers

A prime number can be defined as a positive integer p > 1 if the only
positive factors of p are 1 and p.

If a number is not prime, it is composite.
Every integer can be written as a product of primes uniquely up to

the order of the primes.
There are infinitely many primes.
If n is a composite integer then n has a prime divisor ≤

√
n, and

contrapositively, if n doesn’t have a prime divisor ≤
√
n, then n is

prime.

5.6.1 GCD

For integers a, b ∈ Z, a positive integer c is called the greatest common
divisor of a and b if
1. (c|a) ∧ (c|b)
2. (d|a) ∧ (d|b)⇒ (d|c)⇒ (d ≤ c)

Two numbers are relatively prime if their GCD is one.
If a, b, q, r are non-negative integers such that a = bq + r, then the

gcd(a, b) = gcd(b, r).
If a, b ∈ Z and gcd(a, b) = 1 then (∃α, β ∈ Z) [1 = αa+ βb]

The corollary of the above equation is that if a, b ∈ Z, then
(∃α, β ∈ Z) [gcd(a, b) = αa+ βb]
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5.7 Modular Arithmetic

Fixm ≥ 2(m ∈ Z) and if a, b ∈ Z, then a is congruent to b mod m, a ≡
b( mod m), if and only if m|(a − b) and ∃k ∈ Z such that a − b =
mk ⇒ a = b+mk.
1. If a ≡ b( mod m)⇒ (a = q1m+ r)∧ (b = q2m+ r). In other words,
a and b have the same remainder after dividing by m.
2. If a = b⇒ a ≡ b( mod m)
3. If a ≡ b( mod m) and a, b ∈ {0, 1, 2, · · · ,m} ⇒ a = b.
4. a ≡ a( mod m)
5. a ≡ b( mod m)⇒ b ≡ a( mod m)
6. a ≡ b( mod m) ∧ b ≡ c( mod m)⇒ a ≡ c( mod m)
7. a ≡ b( mod m) ⇒ (a + c) ≡ (b + c)( mod m) ∧ (ac) ≡ (bc)(
mod m)
8. ac ≡ bc( mod m) ∧ gcd(c,m) = 1⇒ a ≡ b( mod m)
9. gcd(a,m) = 1 ⇒ (∃x ∈ Z)[ax ≡ 1( mod m)], and x is called a
multiplicative inverse of a mod m.

5.7.1 The Space Zm

Let m = 11,Z11 = {x( mod 11)|x ∈ Z} which is equivalent to
{[0], [1], [2], · · · , [10]}. Each box is [x] = {k ∈ Z|k ≡ x( mod m)}.
These are called equivalence rings.

5.8 Dirichlet’s Approximation Theorem

For every irrational number α, there are infinitely many rational
numbers p

q
such that

∣∣∣α− p
q

∣∣∣ < 1
q2
.

Lemma: For any integer n ≥ 1 there is a rational number p
q
such

that
∣∣∣α− p

q

∣∣∣ < 1
nq

where 1 ≤ q ≤ n.

6 Graph Theory
A graph can be defined by letting V be a finite, non-empty set of nodes
and E be a set of edges. The pair of sets forms a graph.

In directed graphs we care about the direction of the nodes, and the
order of the pairs in E matter.

In undirected graphs order does not matter.
Multigraphs are graphs that allow several edges between the same

two nodes.
A simple graph is defined as an undirected graph with no loops and

no multiple edges.
If a graph is undirected, then the total degree of the vertices is equal

to twice the edges, therefore there must be an even sum of degrees.
We also have out degree and in degrees.
A graph is called bipartite if it can be written as V = V1 ∪ V2 where

V1 ∩V2 = ∅, and every edge is of the form {a, b} ∈ G∧ a ∈ V1 ∧ b ∈ V2.
A complete bipartite graph has every node in V1 adjacent to every

node in V2.
If we have a graph, then a proper coloring of the graph allows that

each adjacent node be a different color.
The minimum number of colors to properly color a graph is called

its chromatic number. A graph is bipartite if its chromatic number is
2.

We can express graphs as adjacency matrices.
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